
Learning From Networks
——Algorithms, Theory, & Applications

Xiao Huang, Peng Cui, Yuxiao Dong, Jundong Li, Huan Liu, Jian Pei, Le Song,
Jie Tang, Fei Wang, Hongxia Yang, Wenwu Zhu

xhuang@tamu.edu; cuip@tsinghua.edu.cn; yuxdong@microsoft.com; jundongl@asu.edu;
huan.liu@asu.edu; jpei@cs.sfu.ca; le.song@antfin.com; jietang@tsinghua.edu.cn;
few2001@med.cornell.edu; yang.yhx@alibaba-inc.com; wwzhu@tsinghua.edu.cn;

2019

KDD 2019, Anchorage, USA Lecture-Style Tutorial1

45 mins
AM

Motivations

45 mins
AM

Feature
Selection

120 mins
AM

Network
Embedding

90 mins
PM

Attributed Network
Embedding

120 mins
PM

Graph Neural
Networks

2

2005: Gori et al., IJCNN’05

2015: Duvenaud et al., NIPS’15; Kipf & Welling ICLR’17

2018: Velickovic et al., ICLR’18Graph attention

Graph convolutional network

Graph neural network

Neural message passing, GraphSage 2017: Gilmer et al., ICML’17; Hamilton et al., NIPS’17

2014: Bruna et al., ICLR’14 Spectral graph convolution

Gated graph neural network 2016: Li et al., ICLR’16
structure2vec 2016: Dai et al., ICML’16

Graph neural networks

2019: Velickovic et al. & Xu et al., ICLR’19Graph Isomorphism Network, Deep Graph Infomax

3

Connecting NE with graph neural networks

Input:
Adjacency Matrix

!

Random Walk Skip Gram

" = $(!) ' = () (")
Output:
Vectors
'

'′ = +,-.+/_()(!) ' = $('′)

' = $(!'′)
4

!"

!"#$
!"#%

!"&%
!"&$

Network embedding: DeepWalk

Perozzi et al. DeepWalk: Online learning of social representations. In KDD’ 14, pp. 701–710. Most Cited Paper in KDD’14.

Random walk strategies

● Random Walk
o DeepWalk (walk length > 1)
o LINE (walk length = 1)

● Biased Random Walk
o node2vec �2-order random walk�
o metapath2vec (heterogeneous random walk)

1. Perozzi et al. DeepWalk: Online learning of social representations. In KDD’ 14. Most Cited Paper in KDD’14.
2. Tang et al. LINE: Large scale information network embedding. In WWW’15. Most Cited Paper in WWW’15.
3. Grover and Leskovec. node2vec: Scalable feature learning for networks. In KDD’16. 2nd Most Cited Paper in KDD’16.
4. Dong et al. metapath2vec: scalable representation learning for heterogeneous networks. In KDD 2017. Most Cited Paper in KDD’17. 6

Application: Embedding Heterogeneous Academic Graph

Microsoft Academic Graph

metapath2vec

• https://academic.microsoft.com/
• https://www.openacademic.ai/oag/
• metapath2vec: scalable representation learning for heterogeneous networks. In KDD 2017.

https://academic.microsoft.com/
https://www.openacademic.ai/oag/

Application 1: Related Venues

• https://academic.microsoft.com/
• https://www.openacademic.ai/oag/
• metapath2vec: scalable representation learning for heterogeneous networks. In KDD 2017.

https://academic.microsoft.com/
https://www.openacademic.ai/oag/

Harvard Stanford

ColumbiaYale

UChicagoJohns Hopkins

Microsoft

GoogleAT&T Labs

MIT

Facebook

CMU

Application 2: Similarity Search (Institution)

• https://academic.microsoft.com/
• https://www.openacademic.ai/oag/
• metapath2vec: scalable representation learning for heterogeneous networks. In KDD 2017.

https://academic.microsoft.com/
https://www.openacademic.ai/oag/

What are the fundamentals
underlying random-walk + skip-gram based

network embedding models?

Unifying DeepWalk, LINE, PTE, & node2vec as Matrix Factorization

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18.

• DeepWalk

• LINE

• PTE

• node2vec

!"# $ =&
'
&
(
)'(

* Adjacency matrix
+ Degree matrix

b: #negative samples
T: context window size

!"

!"#$
!"#%

!"&%
!"&$

log(#(,, .)|1|2#(!)#(3))?
4 = (6,7)
• Adjacency matrix 8
• Degree matrix 9
• Volume of 4: ;<= 4

Levy and Goldberg. Neural word embeddings as implicit matrix factorization. In NIPS 2014

• #(w,c): co-occurrence of w & c

• #(w): occurrence of word w
• #(c): occurrence of context c

• |1|: number of word-context pairs

Understanding random walk + skip gram

Understanding random walk + skip gram

Suppose the multiset ! is constructed based on random walk on
graphs, can we interpret "#$ #(',))|!|

,#(')#()) with graph structures?

Understanding random walk + skip gram

• Partition the multiset ! into several sub-multisets according to the
way in which each node and its context appear in a random walk
node sequence.

• More formally, for " = 1, 2,⋯ , (, we define

Distinguish direction
and distance

Understanding random walk + skip gram

the length of random walk ! →∞

Understanding random walk + skip gram

the length of random walk ! →∞

Understanding random walk + skip gram

!"

!"#$
!"#%

!"&%
!"&$

DeepWalk is asymptotically and implicitly factorizing

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18.

Understanding random walk + skip gram

'() * =,
"
,
-
."-

/ Adjacency matrix
0 Degree matrix

b: #negative samples
T: context window size

Unifying DeepWalk, LINE, PTE, & node2vec as Matrix Factorization

Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18. The most cited paper in WSDM’18 as of May 2019

• DeepWalk

• LINE

• PTE

• node2vec

NetMF: explicitly factorizing the DeepWalk matrix

!"

!"#$
!"#%
!"&%
!"&$

DeepWalk is asymptotically and implicitly factorizing

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18.

Matrix
Factorization

1. Construction
2. Factorization

! =

NetMF

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18.

Results

Predictive performance on varying the ratio of training data;
The x-axis represents the ratio of labeled data (%)

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18.

Connecting NE with graph neural networks

Input:
Adjacency Matrix

!

Random Walk Skip Gram

Output:
Vectors
"

! =

NetMF

% = #(!) " = () (%)

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18.

Incorporate network structures ! into the similarity matrix %, and then factorize %

23

Challenges

dense

NetMF is not practical for very large networks

! =

NetMF

How can we solve this issue?
1. Construction
2. Factorization

1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019

! =

NetSMF--Sparse

How can we solve this issue?
1. Sparse Construction
2. Sparse Factorization

1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019

! =

Sparsify !

For random-walk matrix polynomial

where and non-negative

One can construct a 1 + $ -spectral sparsifier %& with non-zeros

in time

for undirected graphs

• Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng, Efficient Sampling for Gaussian Graphical Models via Spectral Sparsification, COLT 2015.
• Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. Spectral sparsification of random-walk matrix polynomials. arXiv:1502.03496.

Sparsify !

For random-walk matrix polynomial

where and non-negative

One can construct a 1 + $ -spectral sparsifier %& with non-zeros

in time

1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019

! =

NetSMF --- Sparse

Factorize the constructed matrix

1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019

NetSMF---bounded approximation error

!
"!

1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019

1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019

1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019

1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019

1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019

Connecting NE with graph neural networks

Input:
Adjacency Matrix

!

Random Walk Skip Gram

Output:
Vectors
"

! =

NetMF, NetSMF

% = #(!) " = () (%)

35

Incorporate network structures ! into the similarity matrix %, and then factorize %

ProNE: More fast & scalable network embedding

1. Zhang et al. ProNE: Fast and Scalable Network Representation Learning. In IJCAI 2019

Embedding enhancement via spectral propagation

!" ← $%&'()* − ,-) !"

is the spectral filter of - =)* − $%&'

$%&'()* − ,-) is $%&' modulated by the filter in the spectrum

1. Zhang et al. ProNE: Fast and Scalable Network Representation Learning. In IJCAI 2019

Chebyshev expansion for efficiency

• To avoid explicit eigendecomposition and Fourier transform

o Chebyshev expansion

1. Zhang et al. ProNE: Fast and Scalable Network Representation Learning. In IJCAI 2019

Efficiency

20 Threads 1 Thread

ProNE offers 10-400X speedups
(1 thread vs 20 threads)

19hours 98mins 10mins

1.1M nodes

1. Zhang et al. ProNE: Fast and Scalable Network Representation Learning. In IJCAI 2019

Scalability & Effectiveness

Embed 100,000,000 nodes by one thread:
29 hours with performance superiority

1. Zhang et al. ProNE: Fast and Scalable Network Representation Learning. In IJCAI 2019

Embedding enhancement

1. Zhang et al. ProNE: Fast and Scalable Network Representation Learning. In IJCAI 2019

A general embedding enhancement framework

1. Zhang et al. ProNE: Fast and Scalable Network Representation Learning. In IJCAI 2019

Connecting NE with graph neural networks

Input:
Adjacency Matrix

!

Random Walk Skip Gram

Output:
Vectors
"

! =

NetMF, NetSMF

% = #(!) " = () (%)

Incorporate network structures ! into the similarity matrix %, and then factorize

43

Connecting NE with graph neural networks

Input:
Adjacency Matrix

!

Random Walk Skip Gram

Output:
Vectors
"

NetMF, NetSMF

ProNE

= %(!)

" = %("′)

" =)* (#)

"′ = +,-.+/_)*(!)

Factorize !, and then incorporate network structures via spectral propagation
44

Connecting NE with graph neural networks

a

e

v

b

d

c

!" = $(!", !', !(, !), !*, !+)

ProNE: -* ← /012(34 − 67) -*

1. Defferrard et al. Convolutional Neural Networks on Graphs with Fast Locailzied Spectral Filtering. In NIPS 2016
2. Zhang et al. ProNE: Fast and Scalable Network Representation Learning. In IJCAI 2019

Graph Neural Networks

• Input: an undirected weighted network ! = ($, &) with $ = (& & = m
• Adjacency matrix * ∈ ℝ-.×0

• 12,3 = 452,3 > 0 8, 9 ∈ &
0 8, 9 ∉ &

• Degree matrix ; = <85=(<>, <?,⋯ , <.)

• Node feature matrix A ∈ ℝ.×B

• Output: for each node, its C-dimension latent feature representation vector D.×E

–Latent feature embedding matrix D ∈ ℝ.×E

The Core of Graph Neural Networks

Neighborhood Aggregation:
Aggregate neighbor information and pass into a neural network

a

e

v

b

d

c

!" = $(!&, !(, !), !*, !+)

Graph neural networks

a

e

v

b

d

c

• Neighborhood Aggregation:
o Aggregate neighbor information and pass into a neural network
o It can be viewed as a center-surround filter in CNN---graph convolutions!

GNN: Graph convolutional networks

!"# = %('# (
)∈+ " ∪"

!)#-.
|0(1)||0(3)|

)
a

e

v

b

d

c

1. Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017
2. Defferrard et al. Convolutional Neural Networks on Graphs with Fast Locailzied Spectral Filtering. In NIPS 2016

GNN: Graph convolutional networks

!"# = %('# (
)∈+ " ∪"

!)#-.
|0(1)||0(3)|

)

the neighbors of node 3

node 3’s embedding at layer 4

Non-linear activation function (e.g., ReLU)

parameters in layer 4

a

e

v

b

d

c

GNN: Graph convolutional networks

!"# = %('# (
)∈+ " ∪"

!)#-.
|0(1)||0(3)|

)
a

e

v

b

d

c

1. Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017

GNN: Graph convolutional networks

!"# = %('# (
)∈+ "

!)#,-
. / . 0

+

'#(
"

!"#,-
|.(0)||.(0)|

)

1. Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017

a

e

v

b

d

c

Aggregate from 0’s neighbors

Aggregate from itself

GNN: Graph convolutional networks

!"# = %('# (
)∈+ "

!)#,-
. / . 0

+

'#(
"

!"#,-
|.(0)||.(0)|

)

Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017

a

e

v

b

d

c

The same parameters for both its neighbors & itself

GNN: Graph convolutional networks

!"# = %('# (
)∈+ "

!)#,-
. / . 0

+

'#(
"

!"#,-
|.(0)||.(0)|

)

Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017

a

e

v

b

d

c

4,
-
564,

-
57 #,- ' #

4,
-
584,

-
57 #,- ' #

GNN: Graph convolutional networks

!" = $ %&
'
() + + %&

'
(! "&' , "

Input

- =!.

Output

!/ = 0

1 = (3, 5,))

Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017

GNN: Graph convolutional networks

!" = $ %&
'
() + + %&

'
(! "&' , "

Input

- =!.

Output• Model training
o The common setting is to have an end to end training

framework with a supervised task
o That is, define a loss function over -

!/ = 0

1 = (3, 5,))

Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017

GNN: Graph convolutional networks

!" = $ %&
'
() + + %&

'
(! "&' , "

!- = .

/ = (1, 3,))

Input

5 =!6

Output• Benefits: Parameter sharing for all nodes
o #parameters is subline in |V|
o Enable inductive learning for new nodes

GNN: Graph convolutional networks

!" = $ %&
'
() + + %&

'
(! "&' , "

• GCN is one way of neighbor aggregations
• GraphSage
• Graph Attention
• … …

GraphSage

!"# = %('# (
)∈+ " ∪"

!)#-.
|0(1)||0(3)|

)

Hamilton et al. Inductive Representation Learning on Large Graphs. NIPS 2017

a

e

v

b

d

c

GCN

GraphSage

!"# = %([5# ⋅ AGG !)#-., ∀1 ∈ 0 3 ,;#!"#-.])

Instead of summation, it concatenates
neighbor & self embeddings

GraphSage

!"# = %('# (
)∈+ " ∪"

!)#-.
|0(1)||0(3)|

)

Hamilton et al. Inductive Representation Learning on Large Graphs. NIPS 2017

a

e

v

b

d

c

GCN

GraphSage

!"# = %([5# ⋅ AGG !)#-., ∀1 ∈ 0 3 ,;#!"#-.])
Generalized aggregation: any differentiable
function that maps set of vectors to a single vector

GraphSage

Hamilton et al. Inductive Representation Learning on Large Graphs. NIPS 2017
Slide snipping from “Hamiltion & Tang, AAAI 2019 Tutorial on Graph Representation Learning”

!"# = %([(# ⋅ AGG !,#-., ∀1 ∈ 3 4 ,5#!"#-.])

Graph Neural Networks

a

e

v

b

d

c

Velickovic et al. Graph Attention Networks. ICLR 2018

a

e

v

b

d

c

Graph Neural Networks

!" = $ %&
'
() + + %&

'
(! "&' , "

• GCN is one way of neighbor aggregations
• GraphSage
• Graph Attention
• … …

GNN: Graph Attention

Velickovic et al. Graph Attention Networks. ICLR 2018

!"# = %('# (
)∈+ " ∪"

!)#-.
|0(1)||0(3)|

)
GCN

Graph Attention

!"# = %((
)∈+ " ∪"

4",)'#!)#-.)

Learned attention weights

a

e

v

b

d

c

GNN: Graph Attention

Velickovic et al. Graph Attention Networks. ICLR 2018

a

e

v

b

d

c

Various ways to define attention!

2005: Gori et al., IJCNN’05

2015: Duvenaud et al., NIPS’15; Kipf & Welling ICLR’17

2018: Velickovic et al., ICLR’18Graph attention

Graph convolutional network

Graph neural network

Neural message passing, GraphSage 2017: Gilmer et al., ICML’17; Hamilton et al., NIPS’17

2014: Bruna et al., ICLR’14 Spectral graph convolution

Gated graph neural network 2016: Li et al., ICLR’16
structure2vec 2016: Dai et al., ICML’16

Graph neural networks

2019: Velickovic et al. & Xu et al., ICLR’19Graph Isomorphism Network, Deep Graph Infomax

66

GNN applications & systems

• DeepInf: Modeling social influence with graph neural networks

• LinKG: Knowledge graph linking with heterogeneous graph attention

• AliGraph: A comprehensive graph neural network platform.

o Dr. Hongxia Yang
o Applied data science invited talk

o 10AM--12PM, Thursday, Aug 6th

o Cook Room, Street Level, Egan Center

1. Qiu et al. DeepInf: Social Influence Prediction with Deep Learning. In KDD’18.
2. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.

DeepInf: Modeling social influence with graph neural networks

v

A�

B�
H�

D�
E�

F�

C�

1. Qiu et al. DeepInf: Social Influence Prediction with Deep Learning. In KDD’18.

Given the five friends in red did something,
whether the central users will do the same thing
later, such as retweeting in Twitter, “like” in FB, or
product purchase?

Previous Solution

J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg. Structural diversity in social contagion. PNAS’12.

Graph Attention Networks

1. Qiu et al. DeepInf: Social Influence Prediction with Deep Learning. In KDD'18.

Embedding
Layer

n

B

action status

ego

Input
Layer

B

2

|V|

Loss

Output
Layer

GCN/GAT
Layer

v

Raw
Input

mini-batch
of size B

v

u

user
attributes

Instance
Normalization

d

avv

B

v

Ground
Truth

(a) (b) (c) (d) (e) (f) (g)

avu

xv

xu yu

yv

Experiments --- Results

1. Qiu et al. DeepInf: Social Influence Prediction with Deep Learning. In KDD'18.

Case Study

• How different graph attention heads highlight
different areas of the network.
o Head 1: Focus on the ego-user
o Head 2: Highlight active users
o Head 3: Highlight inactive users

1. Qiu et al. DeepInf: Social Influence Prediction with Deep Learning. In KDD'18.

LinKG: Knowledge graph linking with heterogeneous graph attention

• Input: two heterogeneous entity graphs !"# and !"$.
• Output: entity linkings % = ((#, ($ (# ∈ !"#, ($ ∈ !"$ such that (# and ($ represent

exactly the same entity.

1. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.

Linking large-scale heterogeneous academic graphs

1. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.

Solution -- LinKG

Venue linking module Paper linking module

Author linking module

1. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.

Author linking model — Heterogenous Graph Attention

• Encoder layers
– attention coefficient attn ("# , "%) learnt by self-attention mechanism

– Normalized attention coefficient: differentiate different types of entities

aggregation weight of source entity "% ’s
embedding on target entity "#

1. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.

Author linking model — Heterogenous Graph Attention

Heterogeneous subgraph
for a candidate author pair

Different attention
parameters for
different entity types

Attention coefficient
1. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.

Experimental Results

1. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.

OAG: Open Academic Graph
https://www.openacademic.ai/oag/

1. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.

https://www.openacademic.ai/oag/

Connecting NE with graph neural networks

Input:
Adjacency Matrix

!

Random Walk Skip Gram

" = $(!)
Output:
Vectors
'

' = $('′)

' = $(!'′)

NetMF, NetSMF

ProNE

' =)* (")

'′ = +,-.+/_)*(!)

80

2005: Gori et al., IJCNN’05

2015: Duvenaud et al., NIPS’15; Kipf & Welling ICLR’17

2018: Velickovic et al., ICLR’18Graph attention

Graph convolutional network

Graph neural network

Neural message passing, GraphSage 2017: Gilmer et al., ICML’17; Hamilton et al., NIPS’17

2014: Bruna et al., ICLR’14 Spectral graph convolution

Gated graph neural network 2016: Li et al., ICLR’16
structure2vec 2016: Dai et al., ICML’16

Graph neural networks

2019: Velickovic et al. & Xu et al., ICLR’19Graph Isomorphism Network, Deep Graph Infomax

81

82

References
1. Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie Tang. NetSMF: Large-

Scale Network Embedding as Sparse Matrix Factorization. WWW'19.
2. Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network Embedding as

Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec. WSDM’18.
3. Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. ProNE: Fast and Scalable Network

Representation Learning. IJCAI'19.
4. Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. DeepInf: Modeling

Influence Locality in Large Social Networks. KDD’18.
5. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.
6. Hamilton et al. Inductive Representation Learning on Large Graphs. NIPS 2017
7. Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017
8. Velickovic et al. Graph Attention Networks. ICLR 2018
9. Perozzi et al. DeepWalk: Online learning of social representations. In KDD’ 14.
10.Tang et al. LINE: Large scale information network embedding. In WWW’15.
11.Grover and Leskovec. node2vec: Scalable feature learning for networks. In KDD’16.
12.Dong et al. metapath2vec: scalable representation learning for heterogeneous networks. In KDD 2017.

Lecture-Style Tutorial

Graph Neural Networks:
A Learning Perspective

Learning from graph data

(city=Atlanta) AND (age=40)
(neighbor=A) XOR (neighbor=B)
(bought=car) OR (time<3 years)

How to represent?
How to update?

Feature/algorithm design
Networks

Timing

Various apps

84

Fundamental problem and challenge

Represent?

Entire graph

Each node

Apply

Vector
Representation

Graph Topology
Node attribute
Edge attribute

85

!"

!#

!$!%

!&

!'

("

(#

('

($ (%

(&

GCN/GNN/MPN/Structure2Vec

)$(+)

)#(+)
)"(+)

)%(+)

)'(+)
)&(+)

Obtain embedding via

iterative update algorithm:

1. Initialize)-
(+) = / 0+!- , ∀ 3

2. Iterate 4 times

)-
(5) ← / 0#)-

(57#) +0$ 9
:∈< -

):
(57#) , ∀3

)#(#)

Parameterized
as neural network

[Dai, et al. ICML 16]
86

GCN/GNN/MPN/Structure2Vec

Obtain embedding via

iterative update algorithm:

1. Initialize !"
($) = ' ($)" , ∀ ,

2. Iterate - times
Parameterized

as neural network

. . , .

Supervised
Learning

Generative
Models

Reinforcement
Learning

!"(/) !"(/)
!0/ 0∈2!3(/)

)4

)5

)6)7

)8

)9

:4

:5

:9

:6 :7

:8!6(5)

!5(5)
!4(5)

!7(5)

!9(5)
!8(5)

[Dai, et al. ICML 16]
87

!"
(;) ← ' (5!"

(;=5) +(6 ?
3∈@ "

!3
(;=5) , ∀, Inductive:

Generalize to
New nodes &

Graphs

Variants of graph neural networks

88

General: !"
($) ← '()*+, !"

($-.), 0112,1*+, !3
($-.)

3∈56
, !3

($-7)
3∈58

, …

Vanilla: !"
($) ← : ;.!"

($-.) +;7 ∑3∈> " !3
($-.)

Residual: !"
($) ← !"

($-.) + : ;.!"
($-.) + ⋯

Attention: !"
($) ← : …+;7 ∑3∈> " @3 ⋅ !3

($-.) , ∑3∈> " @3 = 1

Gating: !"
($) ← 1 − E ⋅ !"

($-.) + E ⋅ : ;.!"
($-.) + ⋯

[Many papers …]

!"

!#

!$!%

!&

!'

("

(#

('

($ (%

(&

Different message passing scheme

) "#(+)

1. Initialize)-., ∀ 1, 2

2. Iterate 3 times

3. Aggregate)- = 5% ∑ℓ∈9 -)ℓ-
(:) , ∀ 1

)-.
(;) ← = 5#)-.

(;>#) +5$ @
ℓ∈9 - \B

)ℓ-
(;>#) , ∀(1, 2)

)'#(
+)

)#$
(+)

Parameterized
as neural network

[Dai, et al. ICML 16]

Obtain embedding via

iterative update algorithm:

89

Connection to Other Graph Algorithms:
More General

PageRank, specific feature

What’s the rank
of this user?

Rank !"?

Depends on rank
of who follows her

Loops in graph è Must iterate!

!#

Transition Prob.
$"#

Fixed update
Extract specifics

!" ← &
",# ∈)

$"#!#

Iterate until
convergence
:

91

!user

item

≈

matrix factorization

"
#$%&

Matrix factorization, specific feature

'%

(&

Alternating least square ! − "# *+

1. Initialize '%, (&, ∀-, /
2. Iterate 0 times
• Update user factors:
'% ← argmin8 ∑ &,% ∈; $%& − ' ⋅ (&

+
, ∀-

• Update item factors:
(& ← argmin= ∑ %,& ∈; $%& − '% ⋅ (

+
, ∀/

'%

(&

Fixed update
Extract specifics

92

GNN = Parametrized graph algorithm

Node attribute,
raw info !

Edge attribute,
raw info.

"# ← % !#, "' '∈) #

Graph Algorithm =
Graph Representation + Iterative Update

Le Song 93

GNN is high structured deep model

GNNGeneric function
approximator

(RNN)

Model
Space

Manually
designed

update

Increasingly structured model (more biased)
Le Song 94

Connection to Graph Isomorphism:
Can Represent

Graph isomorphism test
! !′

Same?

96

Weisfeiler-Lehmann algorithm: record subtree as multiset
! !′

Record subtree

97

Weisfeiler-Lehmann algorithm: encode (or hash)

Encode multiset

Map multisets
to new codes

98

Weisfeiler-Lehmann algorithm: record subtree as multiset again

Record subtree

99

Weisfeiler-Lehmann algorithm: encode (or hash) again

Encode multiset

Map multisets
to new codes

100

Weisfeiler-Lehmann algorithm: representation after T iterations
! !′

! = 6, 3, 2, 1, 0, 1, 2, 2, 0, 1, …………

!′ = 6, 3, 2, 1, 2, 1, 0, 0, 2, 1, …………
Level 2
feature

Level 1
feature

Level 0
feature

Level T
features

…………
Approximate Check!
1. If # ! ≠ # !′ ,
graphs not the same
2. Otherwise same
graph or can not tell
yet

101

Representation for multiset function

Vocabulary !, multiset " ⊂ !

1. Representation: ∀% multiset function
% " = ' ∑)∈+ , -

with , a vector function

2. One-to-one: ∃, s.t. ∑)∈+ , - is
unique for each finite multiset "

Map multisets
to new codes

[Dai et al. 2016, Zaheer et al. 2017, Xu et al. 2019]

Key update: / 0123
(5) + 08 ∑9∈: 3 29

(5)

Average or max-pooling not as expressive

102

Lecture-Style Tutorial

Benefit of GNN for
Graph Feature Extraction Algorithm

Materials/Drug design

Dataset Harvard clean
energy project

Size 2.3 million
Type Molecule
Alphabet # 6
Avg node # 28
Avg edge # 33

Power Conversion Efficiency (PCE)
(0 -12 %)

predict

feature dimension MAE
Level 3 1.6 million 0.143

Level 6 1.3 billion 0.096

Organic
Solar Panel
Materials

[Dai et al. ICML 2016]
Le Song 104

Prediction for structured data

!

1. Molecular structure

2. Define graphical model

3. Embed mean
field/belief
propagation

5. Train

Supervised
Learning

"# $
%∈'(

)% =

+,

)% +,,.

predict Efficiency (PCE) /,
(0 -12 %)

4. Regression)0(., +,)
Le Song 105

Parameter learning
Given ! data points "#, "%, … , "' , estimate parameters (and)
which minimize empirical loss

min-,. /),(:=2
34#

'
53 −)789((, "3) %

Computation Operation Similar to
Objective
/),(

A forward sequence of
nonlinear mappings

Graphical model
inference

Gradient
</
<(

Chain rule of derivatives in
reverse order

Back propagation in
deep learning

Le Song 106

More compact model and lower error
Harvard clean energy dataset, 2.3 million organic molecules,

predict power conversion efficiency (0 -12 %)

0.1M 1M 10M 100M 1000M

0.085
0.095
0.120
0.150

0.280

Parameter
number

MAE

Embedded
MF

Embedded
BP

Weisfeiler-Lehman
Level 6

Hashed
WL Level 6

Structure2Vec
reduces model

size by 10,000x !

Le Song 107

Fraudulent account detection

Alipay: new
accounts in a month:
millions of nodes
and edges.

Fake account can
increase system
level risk

���

	��� ����������
��

Bad

Good

device

Leverage account
activity +
connectivity? 108

[Liu, et al. CCS 17, CIKM17]

Fraudulent account pattern
Fake accountNormal account

Device
Connectivity

Account
Activity

109

Results

< 1 percent of fraudulent accounts / month
High precision = less disturbance to user experience
High recall = detect more fraudulent account

Recall

Precision

detection comparison
Rule Structure2vec

110

Lecture-Style Tutorial

GNN to Parametrize
Combinatorial Optimization Algorithm

0

Combinatorial optimization over graph
2 - approximation for minimum vertex cover
Repeat till all edges covered:
• Select uncovered edge with largest total

degree

Manually
designed rule.
Can we learn
from data?

1

1

00

0

0 0

0 0

0

NP-hard problems

Le Song 112

Greedy algorithm as Markov decision process

min
$%∈ ',)

*
+∈,

-+
.. 0. -+ + -2 ≥ 1, ∀ 6, 7 ∈ 8

Repeat:

1. Compute total degree of each
uncovered edge

2. Select both ends of uncovered
edge with largest total degree

Until all edges are covered

Minimum vertex cover: smallest number of nodes to cover all edges

Reward: 9: = −1

State =: current selected nodes

Action value function: >?(=, 6)

Greedy policy:
6∗ = C9DEC-+ >?(=, 6)

Update state =
Le Song 113

[Dai et al. NIPS 2017]

Embedding for state-action value function

pick best
node

Greedy action
!∗ = $%&'$() *+(-, !)

State-action value function
*+ -, !

= 012(03 ∑5∈7 85 + 0: 8))
aggregated
embedding

individual
embedding

; ,

Reinforcement
Learning

1. Problem graph
2 & 3.
Model &
Structure2Vec

4. Q-function5. Train

Le Song 114
[Dai et al. NIPS 2017]

What new algorithm is learned?
Learned algorithm balances between
• degree of the picked node and
• fragmentation of the graph

Structure2Vec Node greedy Edge greedy

Le Song 115
[Dai et al. NIPS 2017]

Lecture-Style Tutorial

GNN to Parametrize
Variational Inference Algorithm

for Probabilistic Logic

!"

Factor graph representation for knowledge base

Entity (constant), # = %, ', (,) …
Predicate (attribute | relation), + ⋅ : #×#×⋯ ↦ 0,1

Eg. Smoke(x), Friend(x,x’), Like(x,x’)

F(A,B)
=1

F(A,C)
=1

S(B)
=1

S(A)
=1

F(A,D)
=1

A B C D

F(B,C) F(B,D) F(C,D) S(C) S(D)

34

117

predicate
binary variable latent variable

! "

Markov logic networks

Use logic formula # ⋅ : &×&×⋯×& ↦ 0,1 for potential functions
Eg. formula #(A,B): Friend(A,B) ∧ Smoke(A) ⇒Smoke(B)

F(A,B)
=1

F(A,C)
=1

S(B)
=1

S(A)
=1

F(A,D)
=1

F(B,C) F(B,D) F(C,D) S(C) S(D)

#(A,B) #(A,C) #(A,D) #(B,C) #(B,D) #(C,D)

/01

118

2 !," = 1
4 exp 8

9
:98

;<
=9(?9)

:9: formula weight, =9 A, A′ : ¬F(x,x’)∨¬S(x) ∨ S(x’), 4: normalization constant

! "

Challenges in inference

A large grounded network, # $% in the number $ of entities!

Enumerate configuration over #($%) binary variables, with # 2)* possibilities.

F(A,B)
=1

F(A,C)
=1

S(B)
=1

S(A)
=1

F(A,D)
=1

F(B,C) F(B,D) F(C,D) S(C) S(D)

+(A,B) +(A,C) +(A,D) +(B,C) +(B,D) +(C,D)

,-.

119

/ S C !/ F B, C !

Efficient inference? Most previous works are on grounded networks

Use GNN for variational inference?

GNN on original KB (!") to get embedding #$, #&, #', #(for entities

#$, #&, #', #(= *++(!"; .)

0

F(A,B)
=1

F(A,C)
=1

S(B)
=1

S(A)
=1

F(A,D)
=1

A B C D

#$ #& #' #(

!"

120

Iterative update 1 = 0,… , 4:

#&567 = 89: #&5 + <
=∈? &

#=5

Similar structure = similar GNN embedding (Dai
ICML’16, Xu ICLR’19)

#=567 = 89: #=5 + <
@∈? =

#@5

[Zhang et al. Arxiv 2019]

Use GNN for variational inference? (eg. Inside VAE)

GNN on original KB (!") to get embedding #$, #&, #', #(for entities

#$, #&, #', #(= *++(!"; .)

Define0 F B, C = 1 5 = 6
6789: ;<

=>? ;@
, 0 S C = 1 5 = 6

6789: BC
=;@

5

F(A,B)
=1

F(A,C)
=1

S(B)
=1

S(A)
=1

F(A,D)
=1

D
F(B,C) F(B,D) F(C,D) S(C) S(D)

A B C D

#$ #& #' #(121

!"E

Train the parameters
., ΘG, .H, . .

with mean field
variational inference

Similar structure = similar GNN embedding (Dai
ICML’16, Xu ICLR’19)

[Zhang et al. Arxiv 2019]

F(A,B)
=1

F(A,C)
=1

S(B)
=1

S(A)
=1

F(A,D)
=1

A B C D

F(B,C) F(B,D) F(C,D) S(C) S(D)

F(A,B)
=1

F(A,C)
=1

S(B)
=1

S(A)
=1

F(A,D)
=1

F(B,C) F(B,D) F(C,D) S(C) S(D)

!(A,B) !(A,C) !(A,D) !(B,C) !(B,D) !(C,D)

is this true?

Is GNN embedding expressive enough?

if and only if

and

" #, % &'(" #), %′

&' #′ % &' %′

" #, % +,- " #), %′

./0

&')

122[Zhang et al. Arxiv 2019]

A

E

L(A,E)

!"(A,E) !"(B,E)

L(B,E)

A and B are the same in KB.
#$, #&, #', #(= *++ ,-; /

F

B

F(A,E)
=1

F(B,F)
=1

F(B,E)
=0

F(A,F)
=0

F(A,E)
=1

ExpressGNN: add a tunable embedding
• formula 1 !0(A,B): Friend(A,B) ∧ Smoke(A) ⇒Smoke(B)
• formula 2 !"(A,B): Friend(A,B) ⇒ Like(A,B)

F(B,E)
=0

!0(A,E)

…… ……

!0(B,E)

3$,3&,3',3(←tunable low dimensional embedding

L(A,E) and L(B,E) are different.

#$ #& 5 L A, E = 1 : = 1
1+ exp #$?ΘA#' +3$?3'

5 L B, E = 1 : = 1
1+ exp #&?ΘA#' +3&?3'

#'

#(123[Zhang et al. Arxiv 2019]

UW-CSE dataset details
22 relations

Teach, publish …

Task goal
Predict who is whose advisor
Zero observed facts for query predicates

94 crowd-sourced FOL formulas
advisedBy(s, p) ⇒professor(p)

advisedBy(s, p) ⇒¬yearsInProgram(s, Year_1)

professor(x) ⇒¬student(y)

publication(p, x) v publication(p,y) v student(x) v ¬student(y) ⇒professor(y)

student(x) v ¬advisedBy(x,y) ⇒ tempAdvisedBy(x,y)
… S1 S3

P2 Paper1publish

pu
bli

sh

Course1

teach

advisedBy?advis
edB

y?

124

Cora dataset details (CS paper citations)

10 relation types
Author, Title, Venue, HasWordTitle, …

Task goal (entity resolution)
De-duplicate citations, authors, and venues
Zero observed facts for query predicates

46 crowd-sourced FOL formulas

A1 A2

W1 Paper1
HasWordTitl

e

Au
tho

r

Has
Word

Auth
or

SameAuthor?

Author

Author(bc1,a1) v Author(bc2,a2) v SameAuthor(a1,a2) ⇒SameBib(bc1,bc2)

HasWordAuthor(a1, w) v HasWordAuthor(a2, w) ⇒SameAuthor(a1, a2)

Title(bc1,t1) v Title(bc2,t2) v SameBib(bc1,bc2) ⇒SameTitle(t1,t2)

SameVenue(v1,v2) v SameVenue(v2,v3) ⇒SameVenue(v1,v3)

Title(bc1, t1) v Title(bc2, t2) v HasWordTitle(t1, +w) v HasWordTitle(t2, +w) ⇒SameBib(bc1, bc2)

… 125

Inference accuracy and time
Area under precision-recall curve (AUC-PR)

Inference wall clock time

126

Lecture-Style Tutorial

GNN to Parametrize
Algorithm for Dynamic Networks

who will do
what and when?

Dynamic processes over networks

ChristineAliceDavid Jacob

02
/0

2

03/02
06/02

11
/0

2

09/02

07/02

BookTowelShoe

Le Song 128

Unroll: time-varying dependency structure
time

!"

!#

!$

!%

Represent

&$ &# &%

&'

&(

)*)+

),)-

)'

)$

)(

)#)%

&,

GM
. = (1, ℇ)

user/item
raw features

Interaction
time/context

[Dai, et al. Recsys 2016, Trivedi et al. ICML 2017]
Le Song 129

time

!"

!#

!$

!%

Forward graph neural networks

Represent

&$ &# &%

&'

&(

)*)+

),)-

)'

)$

)(

)#)%

&,

GM
. = (1, ℇ)

user/item
raw features

Interaction
time/context

Le Song 130
[Dai, et al. Recsys 2016, Trivedi et al. ICML 2017]

Embedding filtering algorithm for generative model
1. Time-varying structure

2. Define graphical model

3. Embed filtering

model Next interaction

! ,

5. Train with
MLE or GAN

Generative
Models

Compatibility between user # and item $
%&' = exp ,&- ./ ,' ./

Likelihood of next event time 0&' .
%&' . − ./ exp −%&' . − ./

2

2

4. Density
,' ./,& ./

Le Song 131
[Dai, et al. Recsys 2016, Trivedi et al. ICML 2017]

IPTV dataset

Next item prediction Return time prediction

7,100 users, 436 programs, ~2M views
MAR: mean absolute rank difference
MAE: mean absolute error (hours)

Better
Better

[Dai, et al. Recsys 2016]
Le Song 132

GDELT database

Events in news media
subject – relation – object
and time

Total archives span >215
years, trillion of events

Time-varying dependency structure

Temporal knowledge graph:
What will happen next?

[Trivedi et al. ICML 2017]
Le Song 133

Enemy’s
friend
is an
enemy

CAIRO CROATIA

MANCHESTER

PROTESTOR

NEW ZEALAND

SOMALIA

TEHRAN

SINGAPORE

ASSAULT

<30-May-2015>

<06-M
ar-2

015>

<ASSAULT : 06-Jul-2015>

CONSULT

CONSULT
COOPERATE

<06-Jun-2015>
<29-Jun-2015>

(predicted event)

TH
REATEN

PROVIDE AID

<07-Ju
n-2

015><20-Jan-2015>

<28-M
ay-2015>

FIGHT
FIGHT

<05-M
ay-2015>

134

COLOMBIA OTTAWA

NEW DELHI

BELGIUM

LIBYA

VENEZUELA

UAE

GAUTEMALA

REDUCE RELATION

<11-Jun-2015>

<16-M
ay-2

015>

<MATERIAL COOP. : 02-Jul-2015>

FIG
HT

CONSULT
PROVIDE AID

<26-Jun-2015>
<03-Feb-2015>

(predicted event)

TR
ADE COOP.

DIPLOMATIC COOP.

<03-M
ay-

2015><22-Apr-2015>

<16-M
ay-2015>

FIGHT
TRADE COOP.

<28-M
ar-2015>

Friends’
friend
is a friend,
common
enemy
strengthen
the tie

Le Song 135

Lecture-Style Tutorial

Large Scale Implementation

Sparse matrix formulation

137

!"

!#

!$!%

!&

!'

("

(#

('

($ (%

(&)$(+)

)#(+)
)"(+)

)%(+)

)'(+)
)&(+))#(#)

)-./# ← 1 2#!- +2$ 4
5∈7 -

)5.

8×:
matrix

8×8
matrix

Iterative node update
formula:

Sparse matrix operation (MKL, GPU, PSBLAS):

…

2$
Sparse

adjacency
matrix …

2#

… +=

)-./#

!-

)-.

1

Stochastic training

138

1. Use a mini-batch of nodes for a stochastic loss function
2. Propagation step ! determines the subgraph to compute
3. Embedding updates on subgraph

Eg. ! = 1

[Chen, Zhu & Song. ICML 2018]

Doubly stochastic training
1. Sample a node
2. Propagation ! steps to obtain a subgraph (eg. ! = 2)
3. Subsample the subgraph
4. Compute loss using the subsampled subgraph

139
[Chen, Zhu & Song. ICML 2018]

Variance reduction training algorithm
Intuition: model parameters ! change slowly, so are embeddings

Idea: approximate embeddings by their historical values

Maintain history embedding #̅$
(&), and Δ#$

(&) = #$
(&) − #̅$

(&)

+ !,#-
(&) + !/ 0

$∈2 -
#$
(&)

= 0
$∈2 -

Δ#$
(&) + #̅$

(&)Rewrite

≈ 2 4
25 4 0

$∈26 -
Δ#$& + 0

$∈2 -
#̅$
(&)Subsample

1. Δ#$
(&) → 0

2. Variance → 0
3. Gradient unbiased
asymptotically

140
[Chen, Zhu & Song. ICML 2018]

!" #
!$ #

Parameter server architecture

141

%&'(" ← * +",& ++$.
/∈!1 &

%/' ++$.
/∈!2 &

%/'

embedding server

worker 1 worker 2
Push Pull …

Reduce

#

Distributed Platform of Structure2Vec

142

Input Data
Dynamic GraphStatic Graph

local cloud

Workers

S1 S2 S3 S4

Read Params Apply Grads

Checkpoints

Evaluation

Shuffle

Storage

Reader

Parameter Servers

w

!

w

!

w

!

w

!Buffer Queue

Chief W2 W3 W4

Fwd BackAgg

Dist. FS

Distributed Linux System

CPU CPU GPU GPU FPGA FPGA

TensorFlow ODPS API Python

Distributed Structure2Vec

Applications

Structure2Vec Architecture

	�
��

1�
������

�
���

1�
������

�����������
2

����������

1�
������

���������1����

1�
������

�� �

Node
Feature

Edge
Feature

Community
Feature

Time Series
Feature

Static + Dynamic Heterogeneous Graph

Event
Feature

Lecture-Style Tutorial

Conclusion

GCN/GNN/Structure2Vec = Parametrized algorithm

! ! , !

Supervised
Learning

Generative
Models

Reinforcement
Learning

144

#$
(&) ←) *+,$ +*. /

0∈2 $
#0
(&3+)

Open new possibility to bridge
Deep learning &

Structures (Graph, Logic, Algorithm)

References
H. Dai, B. Dai and L. Song. Structure2Vec: Discriminative Embedding of Latent Variable Models for Structured Data, ICML 2016.
Y. Zhang, X. Chen, Y. Yang, A. Ramamurthy, B. Li, Y. Qi and L. Song. Can Graph Neural Networks Help Logic Reasoning? Arxiv 2019.
J. Chen, J. Zhu, and L. Song. Stochastic Training of Graph Convolutional Networks. ICML 2018.
R Trivedi, H Dai, Y Wang, L Song. Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graph. ICML 2017.
H Dai, Y Wang, R Trivedi, L Song. Deep Coevolutionary Network: Embedding User and Item Features for Recommendation. Recsys Workshop on Deep
Learning. 2017. (BEST PAPER)
H. Dai, E. Khalil, Y. Zhang, B. Dilkina and L. Song. Learning Combinatorial Optimizations over Graphs. NIPS 2017.
X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, D. Song. Neural Network-based Graph Embedding for Cross-Platform Binary Code Similarity Detection. CCS. 2017.
H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song. Learning Steady States of Iterative Algorithms over Graphs. ICML 2018.
H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song. Adversarial Attack on Graph Structured Data. ICML 2018.
Y. Zhang, H. Dai, Z. Kozareva, A. Smola, and L. Song. Variational Reasoning for Question Answering with Knowledge Graph. AAAI 2018.
Z. Liu, C. Chen, X. Yang, J. Zhou, X. Long and L. Song . Heterogeneous Graph Neural Networks for Malicious Account Detection. CCS2017, CIKM 2018.
Z. Liu, C. Chen, L. Li, J. Zhou, X. Li and L. Song. Geniepath: Graph Neural Networks with Adaptive Receptive Paths. AAAI 2019.
H. Dai, Y. Tian, B. Dai, S. Skiena and L. Song. Syntax Directed Variational Autoencoder for Structured Data. ICLR 2018.
X. Si, H. Dai, M. Raghothanman, M. Naik and L. Song. Learning Loop Invariants for Program Verification. NIPS 2018.

145

