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2005: Gori et al., IJCNN’05

2015: Duvenaud et al., NIPS’15; Kipf & Welling ICLR’17

2018: Velickovic et al., ICLR’18Graph attention

Graph convolutional network

Graph neural network

Neural message passing, GraphSage 2017: Gilmer et al., ICML’17; Hamilton et al., NIPS’17

2014: Bruna et al., ICLR’14 Spectral graph convolution

Gated graph neural network 2016: Li et al., ICLR’16
structure2vec 2016: Dai et al., ICML’16

Graph neural networks

2019: Velickovic et al. & Xu et al., ICLR’19Graph Isomorphism Network, Deep Graph Infomax
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Connecting NE with graph neural networks

Input: 
Adjacency Matrix

!

Random Walk Skip Gram

" = $(!) ' = () (")
Output: 
Vectors
'

'′ = +,-.+/_()(!) ' = $('′)

' = $(!'′)
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Network embedding: DeepWalk

Perozzi et al. DeepWalk: Online learning of social representations. In KDD’ 14, pp. 701–710. Most Cited Paper in KDD’14.



Random walk strategies

● Random Walk
o DeepWalk (walk length > 1)
o LINE          (walk length = 1)

● Biased Random Walk
o node2vec �2-order random walk�
o metapath2vec (heterogeneous random walk)

1. Perozzi et al. DeepWalk: Online learning of social representations. In KDD’ 14. Most Cited Paper in KDD’14.
2. Tang et al. LINE: Large scale information network embedding. In WWW’15. Most  Cited Paper in WWW’15. 
3. Grover and Leskovec. node2vec: Scalable feature learning for networks. In KDD’16. 2nd Most Cited Paper in KDD’16.
4. Dong et al. metapath2vec: scalable representation learning for heterogeneous networks. In KDD 2017. Most Cited Paper in KDD’17. 6



Application: Embedding Heterogeneous Academic Graph

Microsoft Academic Graph 

metapath2vec

• https://academic.microsoft.com/
• https://www.openacademic.ai/oag/
• metapath2vec: scalable representation learning for heterogeneous networks. In KDD 2017. 

https://academic.microsoft.com/
https://www.openacademic.ai/oag/


Application 1: Related Venues

• https://academic.microsoft.com/
• https://www.openacademic.ai/oag/
• metapath2vec: scalable representation learning for heterogeneous networks. In KDD 2017. 

https://academic.microsoft.com/
https://www.openacademic.ai/oag/
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Application 2: Similarity Search (Institution)

• https://academic.microsoft.com/
• https://www.openacademic.ai/oag/
• metapath2vec: scalable representation learning for heterogeneous networks. In KDD 2017. 

https://academic.microsoft.com/
https://www.openacademic.ai/oag/


What are the fundamentals
underlying random-walk + skip-gram based 

network embedding models?



Unifying DeepWalk, LINE, PTE, & node2vec as Matrix Factorization

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18. 

• DeepWalk

• LINE

• PTE  

• node2vec

!"# $ =&
'
&
(
)'(

* Adjacency matrix
+ Degree matrix

b: #negative samples
T: context window size
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log(#(,, .)|1|2#(!)#(3))?
4 = (6,7)
• Adjacency matrix 8
• Degree matrix 9
• Volume of 4: ;<= 4

Levy and Goldberg. Neural word embeddings as implicit matrix factorization. In NIPS 2014

• #(w,c): co-occurrence of w & c

• #(w): occurrence of word w
• #(c): occurrence of context c

• |1|: number of word-context pairs

Understanding random walk + skip gram



Understanding random walk + skip gram

Suppose the multiset ! is constructed based on random walk on 
graphs, can we interpret "#$ #(',))|!|

,#(')#()) with graph structures? 



Understanding random walk + skip gram

• Partition the multiset ! into several sub-multisets according to the 
way in which each node and its context appear in a random walk 
node sequence. 

• More formally, for " = 1, 2,⋯ , (, we define 

Distinguish direction 
and distance



Understanding random walk + skip gram

the length of random walk ! →∞



Understanding random walk + skip gram

the length of random walk ! →∞



Understanding random walk + skip gram
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DeepWalk is asymptotically and implicitly factorizing 

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18. 

Understanding random walk + skip gram

'() * =,
"
,
-
."-

/ Adjacency matrix
0 Degree matrix

b: #negative samples
T: context window size



Unifying DeepWalk, LINE, PTE, & node2vec as Matrix Factorization

Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18. The most cited paper in WSDM’18 as of May 2019

• DeepWalk

• LINE

• PTE  

• node2vec



NetMF: explicitly factorizing the DeepWalk matrix

!"

!"#$
!"#%
!"&%
!"&$

DeepWalk is asymptotically and implicitly factorizing 

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18. 

Matrix 
Factorization



1. Construction
2. Factorization

! =

NetMF

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18. 



Results

Predictive performance on varying the ratio of training data;
The x-axis represents the ratio of labeled data (%)

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18. 



Connecting NE with graph neural networks

Input: 
Adjacency Matrix

!

Random Walk Skip Gram

Output: 
Vectors
"

# ! =

NetMF

% = #(!) " = () (%)

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18. 

Incorporate network structures ! into the similarity matrix %, and then factorize %

23



Challenges 

dense

NetMF is not practical for very large networks

! =



NetMF

How can we solve this issue?
1. Construction
2. Factorization

1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019

! =



NetSMF--Sparse

How can we solve this issue?
1. Sparse Construction
2. Sparse Factorization

1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019

! =



Sparsify !

For random-walk matrix polynomial

where                        and      non-negative

One can construct a 1 + $ -spectral sparsifier %& with                        non-zeros 

in time 

for undirected graphs

• Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng, Efficient Sampling for Gaussian Graphical Models via Spectral Sparsification, COLT 2015.
• Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. Spectral sparsification of random-walk matrix polynomials. arXiv:1502.03496.



Sparsify !

For random-walk matrix polynomial

where                        and      non-negative

One can construct a 1 + $ -spectral sparsifier %& with                        non-zeros 

in time 

1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019

! =



NetSMF --- Sparse

Factorize the constructed matrix

1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019



NetSMF---bounded approximation error

!
"!

1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019



1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019



1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019



1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019



1. Qiu et al. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019



Connecting NE with graph neural networks

Input: 
Adjacency Matrix

!

Random Walk Skip Gram

Output: 
Vectors
"

# ! =

NetMF, NetSMF

% = #(!) " = () (%)

35

Incorporate network structures ! into the similarity matrix %, and then factorize %



ProNE: More fast & scalable network embedding

1. Zhang et al. ProNE: Fast and Scalable Network Representation Learning. In IJCAI 2019



Embedding enhancement via spectral propagation 

!" ← $%&'()* − ,-) !"

is the spectral filter of - = )* − $%&'

$%&'()* − ,-) is $%&' modulated by the filter in the spectrum

1. Zhang et al. ProNE: Fast and Scalable Network Representation Learning. In IJCAI 2019



Chebyshev expansion for efficiency

• To avoid explicit eigendecomposition and Fourier transform 

o Chebyshev expansion     

1. Zhang et al. ProNE: Fast and Scalable Network Representation Learning. In IJCAI 2019



Efficiency

20 Threads 1 Thread

ProNE offers 10-400X speedups 
(1 thread vs 20 threads)

19hours    98mins 10mins

1.1M nodes

1. Zhang et al. ProNE: Fast and Scalable Network Representation Learning. In IJCAI 2019



Scalability & Effectiveness

Embed 100,000,000 nodes by one thread: 
29 hours with performance superiority

1. Zhang et al. ProNE: Fast and Scalable Network Representation Learning. In IJCAI 2019



Embedding enhancement

1. Zhang et al. ProNE: Fast and Scalable Network Representation Learning. In IJCAI 2019



A general embedding enhancement framework

1. Zhang et al. ProNE: Fast and Scalable Network Representation Learning. In IJCAI 2019



Connecting NE with graph neural networks

Input: 
Adjacency Matrix

!

Random Walk Skip Gram

Output: 
Vectors
"

# ! =

NetMF, NetSMF

% = #(!) " = () (%)

Incorporate network structures ! into the similarity matrix %, and then factorize

43



Connecting NE with graph neural networks

Input: 
Adjacency Matrix

!

Random Walk Skip Gram

Output: 
Vectors
"

NetMF, NetSMF

ProNE

# = %(!)

" = %("′)

" = )* (#)

"′ = +,-.+/_)*(!)

Factorize !, and then incorporate network structures via spectral propagation 
44



Connecting NE with graph neural networks

a

e

v

b

d

c

!" = $(!", !', !(, !), !*, !+)

ProNE: -* ← /012(34 − 67) -*

1. Defferrard et al. Convolutional Neural Networks on Graphs with Fast Locailzied Spectral Filtering. In NIPS 2016
2. Zhang et al. ProNE: Fast and Scalable Network Representation Learning. In IJCAI 2019



Graph Neural Networks

• Input: an undirected weighted network ! = ($, &) with $ = ( & & = m
• Adjacency matrix * ∈ ℝ-.×0

• 12,3 = 452,3 > 0 8, 9 ∈ &
0 8, 9 ∉ &

• Degree matrix ; = <85=(<>, <?,⋯ , <.)

• Node feature matrix A ∈ ℝ.×B

• Output: for each node, its C-dimension latent feature representation vector D.×E

–Latent feature embedding matrix D ∈ ℝ.×E



The Core of Graph Neural Networks

Neighborhood Aggregation: 
Aggregate neighbor information and pass into a neural network

a

e

v

b

d

c

!" = $(!&, !(, !), !*, !+)



Graph neural networks

a

e

v

b

d

c

• Neighborhood Aggregation: 
o Aggregate neighbor information and pass into a neural network
o It can be viewed as a center-surround filter in CNN---graph convolutions!



GNN: Graph convolutional networks

!"# = %('# (
)∈+ " ∪"

!)#-.
|0(1)||0(3)|

)
a

e

v

b

d

c

1. Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017
2. Defferrard et al. Convolutional Neural Networks on Graphs with Fast Locailzied Spectral Filtering. In NIPS 2016



GNN: Graph convolutional networks

!"# = %('# (
)∈+ " ∪"

!)#-.
|0(1)||0(3)|

)

the neighbors of node 3

node 3’s embedding at layer 4

Non-linear activation function (e.g., ReLU)

parameters in layer 4

a

e

v

b

d

c



GNN: Graph convolutional networks

!"# = %('# (
)∈+ " ∪"

!)#-.
|0(1)||0(3)|
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e

v

b

d

c

1. Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017



GNN: Graph convolutional networks

!"# = %('# (
)∈+ "

!)#,-
. / . 0

+

'#(
"

!"#,-
|.(0)||.(0)|

)

1. Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017

a

e

v

b

d

c

Aggregate from 0’s neighbors

Aggregate from itself



GNN: Graph convolutional networks

!"# = %('# (
)∈+ "

!)#,-
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Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017

a

e

v

b

d

c

The same parameters for both its neighbors & itself



GNN: Graph convolutional networks

!"# = %('# (
)∈+ "

!)#,-
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Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017

a

e

v

b

d

c
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-
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-
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584,
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GNN: Graph convolutional networks

!" = $ %&
'
( ) + + %&

'
(! "&' , "

Input

- =!.

Output

!/ = 0

1 = (3, 5, ))

Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017



GNN: Graph convolutional networks

!" = $ %&
'
( ) + + %&

'
(! "&' , "

Input

- =!.

Output• Model training  
o The common setting is to have an end to end training 

framework with a supervised task
o That is, define a loss function over -

!/ = 0

1 = (3, 5, ))

Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017



GNN: Graph convolutional networks

!" = $ %&
'
( ) + + %&

'
(! "&' , "

!- = .

/ = (1, 3, ))

Input

5 =!6

Output• Benefits: Parameter sharing for all nodes
o #parameters is subline in |V|
o Enable inductive learning for new nodes



GNN: Graph convolutional networks

!" = $ %&
'
( ) + + %&

'
(! "&' , "

• GCN is one way of neighbor aggregations
• GraphSage
• Graph Attention
• … …



GraphSage

!"# = %('# (
)∈+ " ∪"

!)#-.
|0(1)||0(3)|

)

Hamilton et al. Inductive Representation Learning on Large Graphs. NIPS 2017

a

e

v

b

d

c

GCN

GraphSage

!"# = %([5# ⋅ AGG !)#-., ∀1 ∈ 0 3 ,;#!"#-.])

Instead of summation, it concatenates 
neighbor & self embeddings



GraphSage

!"# = %('# (
)∈+ " ∪"

!)#-.
|0(1)||0(3)|

)

Hamilton et al. Inductive Representation Learning on Large Graphs. NIPS 2017

a

e

v

b

d

c

GCN

GraphSage

!"# = %([5# ⋅ AGG !)#-., ∀1 ∈ 0 3 ,;#!"#-.])
Generalized aggregation: any differentiable 
function that maps set of vectors to a single vector



GraphSage

Hamilton et al. Inductive Representation Learning on Large Graphs. NIPS 2017
Slide snipping from “Hamiltion & Tang, AAAI 2019 Tutorial on Graph Representation Learning”

!"# = %([(# ⋅ AGG !,#-., ∀1 ∈ 3 4 ,5#!"#-.])



Graph Neural Networks

a

e

v

b

d

c

Velickovic et al. Graph Attention Networks. ICLR 2018

a

e

v

b

d

c



Graph Neural Networks

!" = $ %&
'
( ) + + %&

'
(! "&' , "

• GCN is one way of neighbor aggregations
• GraphSage
• Graph Attention
• … …



GNN: Graph Attention

Velickovic et al. Graph Attention Networks. ICLR 2018

!"# = %('# (
)∈+ " ∪"

!)#-.
|0(1)||0(3)|

)
GCN

Graph Attention

!"# = %( (
)∈+ " ∪"

4",)'#!)#-.)

Learned attention weights

a

e

v

b

d

c



GNN: Graph Attention

Velickovic et al. Graph Attention Networks. ICLR 2018

a

e

v

b

d

c

Various ways to define attention!



2005: Gori et al., IJCNN’05

2015: Duvenaud et al., NIPS’15; Kipf & Welling ICLR’17

2018: Velickovic et al., ICLR’18Graph attention

Graph convolutional network

Graph neural network

Neural message passing, GraphSage 2017: Gilmer et al., ICML’17; Hamilton et al., NIPS’17

2014: Bruna et al., ICLR’14 Spectral graph convolution

Gated graph neural network 2016: Li et al., ICLR’16
structure2vec 2016: Dai et al., ICML’16

Graph neural networks

2019: Velickovic et al. & Xu et al., ICLR’19Graph Isomorphism Network, Deep Graph Infomax
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GNN applications & systems

• DeepInf: Modeling social influence with graph neural networks

• LinKG: Knowledge graph linking with heterogeneous graph attention

• AliGraph: A comprehensive graph neural network platform. 

o Dr. Hongxia Yang
o Applied data science invited talk

o 10AM--12PM, Thursday, Aug 6th

o Cook Room, Street Level, Egan Center

1. Qiu et al. DeepInf: Social Influence Prediction with Deep Learning. In KDD’18.
2. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.



DeepInf: Modeling social influence with graph neural networks

v

A�

B�
H�

D�
E�

F�

C�

1. Qiu et al. DeepInf: Social Influence Prediction with Deep Learning. In KDD’18.

Given the five friends in red did something,
whether the central users will do the same thing
later, such as retweeting in Twitter, “like” in FB, or
product purchase?



Previous Solution

J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg. Structural diversity in social contagion. PNAS’12.



Graph Attention Networks

1. Qiu et al. DeepInf: Social Influence Prediction with Deep Learning. In KDD'18. 

Embedding 
Layer

n

B

action status

ego

Input
Layer

B

2

|V|

Loss

Output
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v

Raw
Input 
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of size B
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u
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Instance 
Normalization 

d
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Experiments --- Results

1. Qiu et al. DeepInf: Social Influence Prediction with Deep Learning. In KDD'18. 



Case Study

• How different graph attention heads highlight 
different areas of the network.
o Head 1: Focus on the ego-user
o Head 2: Highlight active users 
o Head 3: Highlight inactive users

1. Qiu et al. DeepInf: Social Influence Prediction with Deep Learning. In KDD'18. 



LinKG: Knowledge graph linking with heterogeneous graph attention

• Input: two heterogeneous entity graphs !"# and !"$.
• Output: entity linkings % = ((#, ($ (# ∈ !"#, ($ ∈ !"$ such that (# and ($ represent 

exactly the same entity.

1. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.



Linking large-scale heterogeneous academic graphs

1. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.



Solution -- LinKG

Venue linking module Paper linking module

Author linking module

1. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.



Author linking model — Heterogenous Graph Attention

• Encoder layers
– attention coefficient attn ("# , "%) learnt by self-attention mechanism

– Normalized attention coefficient: differentiate different types of entities

aggregation weight of source entity "% ’s 
embedding on target entity "#

1. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.



Author linking model — Heterogenous Graph Attention

Heterogeneous subgraph
for a candidate author pair

Different attention
parameters for
different entity types

Attention coefficient
1. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.



Experimental Results

1. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.



OAG: Open Academic Graph
https://www.openacademic.ai/oag/

1. Zhang, et al. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. In KDD'19.

https://www.openacademic.ai/oag/


Connecting NE with graph neural networks

Input: 
Adjacency Matrix

!

Random Walk Skip Gram

" = $(!)
Output: 
Vectors
'

' = $('′)

' = $(!'′)

NetMF, NetSMF

ProNE

' = )* (")

'′ = +,-.+/_)*(!)
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2005: Gori et al., IJCNN’05

2015: Duvenaud et al., NIPS’15; Kipf & Welling ICLR’17

2018: Velickovic et al., ICLR’18Graph attention

Graph convolutional network

Graph neural network

Neural message passing, GraphSage 2017: Gilmer et al., ICML’17; Hamilton et al., NIPS’17

2014: Bruna et al., ICLR’14 Spectral graph convolution

Gated graph neural network 2016: Li et al., ICLR’16
structure2vec 2016: Dai et al., ICML’16

Graph neural networks

2019: Velickovic et al. & Xu et al., ICLR’19Graph Isomorphism Network, Deep Graph Infomax
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Lecture-Style Tutorial

Graph Neural Networks: 
A Learning Perspective



Learning from graph data

(city=Atlanta) AND (age=40)
(neighbor=A) XOR (neighbor=B)
(bought=car) OR (time<3 years)

How to represent?
How to update? 

Feature/algorithm design
Networks

Timing

Various apps

84



Fundamental problem and challenge

Represent?

Entire graph

Each node

Apply

Vector
Representation

Graph Topology
Node attribute
Edge attribute

85
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GCN/GNN/MPN/Structure2Vec

)$(+)

)#(+)
)"(+)

)%(+)

)'(+)
)&(+)

Obtain embedding via

iterative update algorithm:

1. Initialize )-
(+) = / 0+!- , ∀ 3

2. Iterate 4 times

)-
(5) ← / 0#)-

(57#) +0$ 9
:∈< -

):
(57#) , ∀3

)#(#)

Parameterized 
as neural network

[Dai, et al. ICML 16]
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GCN/GNN/MPN/Structure2Vec

Obtain embedding via

iterative update algorithm:

1. Initialize !"
($) = ' ($)" , ∀ ,

2. Iterate - times
Parameterized 

as neural network

. . , .

Supervised 
Learning 

Generative
Models

Reinforcement
Learning

!"(/) !"(/)
!0/ 0∈2!3(/)

)4

)5

)6 )7

)8

)9

:4

:5

:9

:6 :7

:8!6(5)

!5(5)
!4(5)

!7(5)

!9(5)
!8(5)

[Dai, et al. ICML 16]
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Variants of graph neural networks

88

General:      !"
($) ← '()*+, !"

($-.), 0112,1*+, !3
($-.)

3∈56
, !3

($-7)
3∈58

, …

Vanilla: !"
($) ← : ;.!"

($-.) +;7 ∑3∈> " !3
($-.)

Residual:      !"
($) ← !"

($-.) + : ;.!"
($-.) + ⋯

Attention:     !"
($) ← : …+;7 ∑3∈> " @3 ⋅ !3

($-.) , ∑3∈> " @3 = 1

Gating:          !"
($) ← 1 − E ⋅ !"

($-.) + E ⋅ : ;.!"
($-.) + ⋯

[Many papers …]



!"

!#

!$ !%

!&

!'

("

(#

('

($ (%

(&

Different message passing scheme

) "#(+)

1. Initialize )-., ∀ 1, 2

2. Iterate 3 times

3. Aggregate )- = 5% ∑ℓ∈9 - )ℓ-
(:) , ∀ 1

)-.
(;) ← = 5#)-.

(;>#) +5$ @
ℓ∈9 - \B

)ℓ-
(;>#) , ∀(1, 2)

)'#(
+)

)#$
(+)

Parameterized 
as neural network

[Dai, et al. ICML 16]

Obtain embedding via

iterative update algorithm:

89



Connection to Other Graph Algorithms:
More General



PageRank, specific feature

What’s the rank 
of this user?

Rank !"?

Depends on rank 
of who follows her

Loops in graph è Must iterate!

!#

Transition Prob.
$"#

Fixed update
Extract specifics

!" ← &
",# ∈)

$"#!#

Iterate until 
convergence
:

91



!user

item

≈

matrix factorization

"
#$%&

Matrix factorization, specific feature

'%

(&

Alternating least square ! − "# *+

1. Initialize '%, (&, ∀-, /
2. Iterate 0 times
• Update user factors:
'% ← argmin8 ∑ &,% ∈; $%& − ' ⋅ (&

+
, ∀-

• Update item factors:
(& ← argmin= ∑ %,& ∈; $%& − '% ⋅ (

+
, ∀/

'%

(&

Fixed update
Extract specifics

92



GNN = Parametrized graph algorithm

Node attribute,
raw info !

Edge attribute,
raw info.

"# ← % !#, "' '∈) #

Graph Algorithm = 
Graph Representation + Iterative Update

Le Song 93



GNN is high structured deep model

GNNGeneric function
approximator

(RNN)

Model 
Space

Manually 
designed

update

Increasingly structured model (more biased)
Le Song 94



Connection to Graph Isomorphism: 
Can Represent



Graph isomorphism test
! !′

Same?

96



Weisfeiler-Lehmann algorithm: record subtree as multiset
! !′

Record subtree

97



Weisfeiler-Lehmann algorithm: encode (or hash)

Encode multiset

Map multisets 
to new codes

98



Weisfeiler-Lehmann algorithm: record subtree as multiset again

Record subtree

99



Weisfeiler-Lehmann algorithm: encode (or hash) again

Encode multiset

Map multisets 
to new codes

100



Weisfeiler-Lehmann algorithm: representation after T iterations
! !′

# ! = 6, 3, 2, 1, 0, 1, 2, 2, 0, 1, …………

# !′ = 6, 3, 2, 1, 2, 1, 0, 0, 2, 1, …………
Level 2 
feature

Level 1 
feature

Level 0
feature

Level T
features

…………
Approximate Check!
1. If # ! ≠ # !′ , 
graphs not the same 
2. Otherwise same 
graph or can not tell 
yet

101



Representation for multiset function

Vocabulary !, multiset " ⊂ !

1. Representation: ∀% multiset function
% " = ' ∑)∈+ , -

with , a vector function 

2. One-to-one: ∃, s.t. ∑)∈+ , - is 
unique for each finite multiset "

Map multisets 
to new codes

[Dai et al. 2016, Zaheer et al. 2017, Xu et al. 2019]

Key update: / 0123
(5) + 08 ∑9∈: 3 29

(5)

Average or max-pooling not as expressive

102



Lecture-Style Tutorial

Benefit of GNN for 
Graph Feature Extraction Algorithm



Materials/Drug design

Dataset Harvard clean
energy project 

Size 2.3 million
Type Molecule
Alphabet # 6
Avg node # 28
Avg edge # 33

Power Conversion Efficiency (PCE) 
(0 -12 %)

predict

feature dimension MAE
Level 3 1.6 million 0.143

Level 6 1.3 billion 0.096

Organic 
Solar Panel 
Materials

[Dai et al. ICML 2016]
Le Song 104



Prediction for structured data

!

1. Molecular structure

2. Define graphical model

3. Embed mean 
field/belief 
propagation

5. Train

Supervised 
Learning 

"# $
%∈'(

)% =

+,

)% +,,.

predict Efficiency (PCE)  /,
(0 -12 %)

4. Regression)0(., +,)
Le Song  105



Parameter learning 
Given ! data points "#, "%, … , "' , estimate parameters ( and )
which minimize empirical loss

min-,. / ),( :=2
34#

'
53 − )789((, "3) %

Computation Operation Similar to
Objective
/ ),(

A forward sequence of 
nonlinear mappings

Graphical model
inference

Gradient 
</
<(

Chain rule of derivatives in 
reverse order

Back propagation in 
deep learning

Le Song 106



More compact model and lower error
Harvard clean energy dataset, 2.3 million organic molecules, 

predict power conversion efficiency (0 -12 %)

0.1M 1M 10M 100M 1000M

0.085
0.095
0.120
0.150

0.280

Parameter
number

MAE

Embedded 
MF

Embedded 
BP

Weisfeiler-Lehman
Level 6

Hashed
WL Level 6

Structure2Vec
reduces model 

size by 10,000x !

Le Song 107



Fraudulent account detection

Alipay: new 
accounts in a month: 
millions of nodes 
and edges. 

Fake account can 
increase system 
level risk

���

	���  ����������
��

Bad

Good

device

Leverage account 
activity + 
connectivity? 108

[Liu, et al. CCS 17, CIKM17]



Fraudulent account pattern
Fake accountNormal account

Device 
Connectivity

Account
Activity

109



Results

< 1 percent of fraudulent accounts / month
High precision  = less disturbance to user experience
High recall = detect more fraudulent account

Recall

Precision

detection comparison
Rule Structure2vec

110



Lecture-Style Tutorial

GNN to Parametrize
Combinatorial Optimization Algorithm



0

Combinatorial optimization over graph
2 - approximation  for  minimum  vertex  cover
Repeat till all edges covered: 
• Select uncovered edge with largest total 

degree

Manually 
designed rule. 
Can we learn
from data?

1

1

00

0

0 0

0 0

0

NP-hard problems

Le Song 112



Greedy algorithm as Markov decision process

min
$%∈ ',)

*
+∈,

-+
.. 0. -+ + -2 ≥ 1, ∀ 6, 7 ∈ 8

Repeat: 

1. Compute total degree of each 
uncovered edge

2. Select both ends of uncovered 
edge with largest total degree

Until all edges are covered

Minimum vertex cover: smallest number of nodes to cover all edges

Reward: 9: = −1

State =: current selected nodes

Action value function: >?(=, 6)

Greedy policy: 
6∗ = C9DEC-+ >?(=, 6)

Update state =
Le Song 113

[Dai et al.  NIPS 2017]



Embedding for state-action value function

pick best 
node

Greedy action
!∗ = $%&'$() *+(-, !)

State-action value function 
*+ -, !

= 012(03 ∑5∈7 85 + 0: 8))
aggregated 
embedding

individual
embedding

; ,

Reinforcement
Learning

1. Problem graph
2 & 3.
Model &
Structure2Vec

4. Q-function5. Train

Le Song 114
[Dai et al.  NIPS 2017]



What new algorithm is learned?
Learned algorithm balances between 
• degree of the picked node and 
• fragmentation of the graph

Structure2Vec Node greedy Edge greedy

Le Song 115
[Dai et al.  NIPS 2017]



Lecture-Style Tutorial

GNN to Parametrize 
Variational Inference Algorithm

for Probabilistic Logic



!"

Factor graph representation for knowledge base

Entity (constant), # = %, ', (, ) …
Predicate (attribute | relation), + ⋅ : #×#×⋯ ↦ 0,1

Eg. Smoke(x), Friend(x,x’), Like(x,x’)

F(A,B)
=1

F(A,C)
=1

S(B)
=1

S(A)
=1

F(A,D)
=1

A B C D

F(B,C) F(B,D) F(C,D) S(C) S(D)

34

117

predicate
binary variable latent variable 



! "

Markov logic networks

Use logic formula # ⋅ : &×&×⋯×& ↦ 0,1 for potential functions
Eg. formula #(A,B): Friend(A,B) ∧ Smoke(A) ⇒Smoke(B) 

F(A,B)
=1

F(A,C)
=1

S(B)
=1

S(A)
=1

F(A,D)
=1

F(B,C) F(B,D) F(C,D) S(C) S(D)

#(A,B) #(A,C) #(A,D) #(B,C) #(B,D) #(C,D)

/01

118

2 !," = 1
4 exp 8

9
:98

;<
=9(?9)

:9: formula weight,  =9 A, A′ : ¬F(x,x’)∨¬S(x) ∨ S(x’), 4: normalization constant



! "

Challenges in inference

A large grounded network, # $% in the number $ of entities!

Enumerate configuration over #($%) binary variables, with # 2)* possibilities.

F(A,B)
=1

F(A,C)
=1

S(B)
=1

S(A)
=1

F(A,D)
=1

F(B,C) F(B,D) F(C,D) S(C) S(D)

+(A,B) +(A,C) +(A,D) +(B,C) +(B,D) +(C,D)

,-.

119

/ S C !/ F B, C !

Efficient inference? Most previous works are on grounded networks



Use GNN for variational inference?

GNN on original KB (!") to get embedding #$, #&, #', #( for entities

#$, #&, #', #( = *++(!"; .)

0

F(A,B)
=1

F(A,C)
=1

S(B)
=1

S(A)
=1

F(A,D)
=1

A B C D

#$ #& #' #(

!"

120

Iterative update 1 = 0,… , 4:

#&567 = 89: #&5 + <
=∈? &

#=5

Similar structure = similar GNN embedding (Dai 
ICML’16, Xu ICLR’19)

#=567 = 89: #=5 + <
@∈? =

#@5

[Zhang et al.  Arxiv 2019]



Use GNN for variational inference? (eg. Inside VAE)

GNN on original KB (!") to get embedding #$, #&, #', #( for entities

#$, #&, #', #( = *++(!"; .)

Define0 F B, C = 1 5 = 6
6789: ;<

=>? ;@
, 0 S C = 1 5 = 6

6789: BC
=;@

5

F(A,B)
=1

F(A,C)
=1

S(B)
=1

S(A)
=1

F(A,D)
=1

D
F(B,C) F(B,D) F(C,D) S(C) S(D)

A B C D

#$ #& #' #( 121

!"E

Train the parameters
., ΘG, .H, . .

with mean field 
variational inference

Similar structure = similar GNN embedding (Dai 
ICML’16, Xu ICLR’19)

[Zhang et al.  Arxiv 2019]



F(A,B)
=1

F(A,C)
=1

S(B)
=1

S(A)
=1

F(A,D)
=1

A B C D

F(B,C) F(B,D) F(C,D) S(C) S(D)

F(A,B)
=1

F(A,C)
=1

S(B)
=1

S(A)
=1

F(A,D)
=1

F(B,C) F(B,D) F(C,D) S(C) S(D)

!(A,B) !(A,C) !(A,D) !(B,C) !(B,D) !(C,D)

is this true? 

Is GNN embedding expressive enough? 

if and only if

and

" #, % &'( " #), %′

# &' #′ % &' %′

" #, % +,- " #), %′

./0

&')

122[Zhang et al.  Arxiv 2019]



A

E

L(A,E)

!"(A,E) !"(B,E)

L(B,E)

A and B are the same in KB.
#$, #&, #', #( = *++ ,-; /

F

B

F(A,E)
=1

F(B,F)
=1

F(B,E)
=0

F(A,F)
=0

F(A,E)
=1

ExpressGNN: add a tunable embedding
• formula 1 !0(A,B): Friend(A,B) ∧ Smoke(A) ⇒Smoke(B)
• formula 2 !"(A,B): Friend(A,B) ⇒ Like(A,B)

F(B,E)
=0

!0(A,E)

…… ……

!0(B,E)

3$,3&,3',3( ←tunable low dimensional embedding

L(A,E) and L(B,E) are different.

#$ #& 5 L A, E = 1 : = 1
1+ exp #$?ΘA#' +3$?3'

5 L B, E = 1 : = 1
1+ exp #&?ΘA#' +3&?3'

#'

#( 123[Zhang et al.  Arxiv 2019]



UW-CSE dataset details
22 relations

Teach, publish …

Task goal
Predict who is whose advisor
Zero observed facts for query predicates

94 crowd-sourced FOL formulas
advisedBy(s, p) ⇒professor(p)

advisedBy(s, p) ⇒¬yearsInProgram(s, Year_1)

professor(x) ⇒¬student(y)

publication(p, x) v publication(p,y) v student(x) v ¬student(y) ⇒professor(y)

student(x) v ¬advisedBy(x,y) ⇒ tempAdvisedBy(x,y)
… S1 S3

P2 Paper1publish

pu
bli

sh

Course1

teach

advisedBy?advis
edB

y?

124



Cora dataset details (CS paper citations)

10 relation types
Author, Title, Venue, HasWordTitle, …

Task goal (entity resolution)
De-duplicate citations, authors, and venues
Zero observed facts for query predicates

46 crowd-sourced FOL formulas

A1 A2

W1 Paper1
HasWordTitl

e

Au
tho

r

Has
Word

Auth
or

SameAuthor?

Author

Author(bc1,a1) v Author(bc2,a2) v SameAuthor(a1,a2) ⇒SameBib(bc1,bc2)

HasWordAuthor(a1, w) v HasWordAuthor(a2, w) ⇒SameAuthor(a1, a2)

Title(bc1,t1) v Title(bc2,t2) v SameBib(bc1,bc2) ⇒SameTitle(t1,t2)

SameVenue(v1,v2) v SameVenue(v2,v3) ⇒SameVenue(v1,v3)

Title(bc1, t1) v Title(bc2, t2) v HasWordTitle(t1, +w) v HasWordTitle(t2, +w) ⇒SameBib(bc1, bc2)

… 125



Inference accuracy and time
Area under precision-recall curve (AUC-PR)

Inference wall clock time

126



Lecture-Style Tutorial

GNN to Parametrize
Algorithm for Dynamic Networks



who will do 
what and when?

Dynamic processes over networks

ChristineAliceDavid Jacob

02
/0

2

03/02
06/02

11
/0

2

09/02

07/02

BookTowelShoe

Le Song  128



Unroll: time-varying dependency structure
time

!"

!#

!$

!%

Represent

&$ &# &%

&'

&(

)* )+

), )-

)'

)$

)(

)# )%

&,

GM
. = (1, ℇ)

user/item
raw features

Interaction
time/context

[Dai, et al. Recsys 2016, Trivedi et al. ICML 2017]
Le Song  129



time

!"

!#

!$

!%

Forward graph neural networks

Represent

&$ &# &%

&'

&(

)* )+

), )-

)'

)$

)(

)# )%

&,

GM
. = (1, ℇ)

user/item
raw features

Interaction
time/context

Le Song  130
[Dai, et al. Recsys 2016, Trivedi et al. ICML 2017]



Embedding filtering algorithm for generative model
1. Time-varying structure

2. Define graphical model

3. Embed filtering

model Next interaction

! ,

5. Train with 
MLE or GAN

Generative
Models

Compatibility between user # and item $
%&' = exp ,&- ./ ,' ./

Likelihood of next event time  0&' .
%&' . − ./ exp −%&' . − ./

2

2

4. Density
,' ./,& ./

Le Song  131
[Dai, et al. Recsys 2016, Trivedi et al. ICML 2017]



IPTV dataset

Next item prediction Return time prediction

7,100 users, 436 programs, ~2M views
MAR: mean absolute rank difference
MAE: mean absolute error (hours)

Better
Better

[Dai, et al. Recsys 2016]
Le Song  132



GDELT database

Events in news media
subject – relation – object 
and time

Total archives span >215 
years, trillion of events

Time-varying dependency structure

Temporal knowledge graph: 
What will happen next? 

[Trivedi et al. ICML 2017]
Le Song  133



Enemy’s 
friend 
is an 
enemy

CAIRO CROATIA

MANCHESTER

PROTESTOR

NEW ZEALAND

SOMALIA

TEHRAN

SINGAPORE

ASSAULT

<30-May-2015>

<06-M
ar-2

015>

<ASSAULT : 06-Jul-2015>

CONSULT

CONSULT
COOPERATE

<06-Jun-2015>
<29-Jun-2015>

(predicted event)

TH
REATEN

PROVIDE AID

<07-Ju
n-2

015><20-Jan-2015>

<28-M
ay-2015>

FIGHT
FIGHT

<05-M
ay-2015>
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COLOMBIA OTTAWA

NEW DELHI

BELGIUM

LIBYA

VENEZUELA

UAE

GAUTEMALA

REDUCE RELATION

<11-Jun-2015>

<16-M
ay-2

015>

<MATERIAL COOP. : 02-Jul-2015>

FIG
HT

CONSULT
PROVIDE AID

<26-Jun-2015>
<03-Feb-2015>

(predicted event)

TR
ADE COOP.

DIPLOMATIC COOP.

<03-M
ay-

2015><22-Apr-2015>

<16-M
ay-2015>

FIGHT
TRADE COOP.

<28-M
ar-2015>

Friends’ 
friend 
is a friend, 
common 
enemy 
strengthen 
the tie

Le Song  135



Lecture-Style Tutorial

Large Scale Implementation



Sparse matrix formulation

137

!"

!#

!$ !%

!&

!'

("

(#

('

($ (%

(&)$(+)

)#(+)
)"(+)

)%(+)

)'(+)
)&(+))#(#)

)-./# ← 1 2#!- +2$ 4
5∈7 -

)5.

8×:
matrix

8×8
matrix

Iterative node update 
formula: 

Sparse matrix operation (MKL, GPU, PSBLAS): 

…

2$
Sparse 

adjacency
matrix  …

2#

… +=

)-./#

!-

)-.

1



Stochastic training

138

1. Use a mini-batch of nodes for a stochastic loss function
2. Propagation step ! determines the subgraph to compute
3. Embedding updates on subgraph

Eg. ! = 1

[Chen, Zhu & Song. ICML 2018]



Doubly stochastic training
1. Sample a node
2. Propagation ! steps to obtain a subgraph (eg. ! = 2)
3. Subsample the subgraph
4. Compute loss using the subsampled subgraph

139
[Chen, Zhu & Song. ICML 2018]



Variance reduction training algorithm
Intuition: model parameters ! change slowly, so are embeddings

Idea: approximate embeddings by their historical values

Maintain history embedding #̅$
(&), and Δ#$

(&) = #$
(&) − #̅$

(&)

+ !,#-
(&) + !/ 0

$∈2 -
#$
(&)

= 0
$∈2 -

Δ#$
(&) + #̅$

(&)Rewrite

≈ 2 4
25 4 0

$∈26 -
Δ#$& + 0

$∈2 -
#̅$
(&)Subsample

1. Δ#$
(&) → 0

2. Variance → 0
3. Gradient unbiased 
asymptotically

140
[Chen, Zhu & Song. ICML 2018]



!" #
!$ #

Parameter server architecture

141

%&'(" ← * +",& ++$ .
/∈!1 &

%/' ++$ .
/∈!2 &

%/'

embedding server

worker 1 worker 2
Push Pull …

Reduce

#



Distributed Platform of Structure2Vec

142

Input Data
Dynamic GraphStatic Graph

local cloud

Workers

S1 S2 S3 S4

Read Params Apply Grads

Checkpoints

Evaluation

Shuffle

Storage

Reader

Parameter Servers

w

!

w

!

w

!

w

!Buffer Queue

Chief W2 W3 W4

Fwd BackAgg

Dist. FS

Distributed Linux System

CPU CPU GPU GPU FPGA FPGA

TensorFlow ODPS API Python

Distributed Structure2Vec

Applications

Structure2Vec Architecture

	�
��

1�
������

�
���

1�
������

�����������
2

����������

1�
������

���������1����

1�
������

�� � 

Node 
Feature

Edge 
Feature

Community 
Feature

Time Series
Feature

Static + Dynamic Heterogeneous Graph

Event
Feature



Lecture-Style Tutorial

Conclusion



GCN/GNN/Structure2Vec = Parametrized algorithm

! ! , !

Supervised 
Learning 

Generative
Models

Reinforcement
Learning

144

#$
(&) ← ) *+,$ +*. /

0∈2 $
#0
(&3+)

Open new possibility to bridge
Deep learning & 

Structures (Graph, Logic, Algorithm)  
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