Attributed Network Embedding

O Motivations & challenges

0 Mining attributed networks with shallow embedding
Coupled spectral embedding
Coupled matrix & tri-factorization
Random walk based embedding

O Mining attributed networks with deep embedding
Objective function based deep embedding
Graph neural networks

O Human-centric network analysis
Interpretable node representation learning
Attributed network analysis with humans in the loop
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Interpretable node representation learning
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[Liu et al. WSDM, 2019]
e Opacity of embedding space

o How representation vectors distribute in the embedding space?
o What information is encoded in different embedding space regions?
o Existing methods for explaining classifiers are not directly applicable

e Comprehensible node attributes are available

e Goal: Mining explainable structures and identifying characteristic
factors from the mass of representation vectors



Spatial encoding and multimodal analytics
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Spatial encoding
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Multimodal autoencoder
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the interpretation for embedding ol |® : :

representation h is,
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o The input to the node attribute side is set to be absent
o The output from node attribute decoder is used as the interpretation 53



Attributed network analysis with humans in the loop
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[Huang et al. WSDM, 2018]

a

Tasks

Classification
Clustering
Link Prediction
Visualization

e Attributed network embedding (ANE) serves as infrastructures of

various real-world applications

e We aim to learn cognition from experts and incorporate it into ANE
to advance downstream analysis algorithms
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Expert cognition benefits data analysis

e Definition: Meaningful and Intelligence-related info that experts
know beyond the data

« Understanding of domain knowledge
« Awareness of conventions

« Perception of latent relations

e Example: Human understand the sentiment in product reviews. This
cognition could be applied to enhance the recommendations
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Network embedding with expert cognition - NEEC
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Convert the abstract and meaningful cognition of domain experts
into concrete answers

Incorporate answers into ANE towards a more informative H

Employ a general and concise form of queries to learn expert
cognition from the oracle while greatly saving his/her effort 56



Strategies of framework NEEC
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e Two steps to find the top K meaningful queries
o Find few representative and distinct nodes (in red) as prototypes

o lteratively select K nodes from the remaining nodes (in blue) with the
largest amount of expected learned expert cognition

e Oracle needs to indicate a node from the prototypes (e.g.,j = 1)
that is the most similar to the queried node i =5 S7



Strategies of framework NEEC
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e Answers will be added into the network structure in the form of
weighted edges, named as cognition edges (red dotted lines)

e With these cognition edges, different ANE methods can be directly
applied to the expert cognition informed network to learn H 58



Human-centric network analysis

e Focuses:
Interpretable embedding, & utilizing network embedding to
incorporate human knowledge

e Methods:
Interpretable node representation learning
Attributed network analysis with humans in the loop
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Summary of attributed network embedding

e ANE learns low-dimensional vectors to represent all nodes, bridging
the gap between real-world systems & ML algorithms

e Challenges: Heterogeneity, large-scale, & Data Characteristics Vary
Significantly

e Compare with other research topics

o Multiview learning: Learn a unified representation of instances from
multiple feature matrices observed from different aspects

o Multimodal learning: Embed multiple sources with distinct modalities such
as networks, images, and audio

o Aftributed network embedding: Preserve proximity information in networks
and (one or multiple types of) node attributes
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Summary of Attributed Network Embedding

e Shallow attributed network embedding:
o Coupled spectral embedding
o Coupled matrix & tri-factorization
o Random walk based embedding

e Deep attributed network embedding:
o Objective function based deep embedding
o Graph neural networks

e Comprehensible node attributes help humans interact with systems.
o Interpretable node representation learning

o Attributed network analysis with humans in the loop
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