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Objective function based deep embedding

Obijective function of DeepWalk:

Ipeepwalk = —log(a(h, hy)) — Q - Ky, < p, (v) log(o(=h, hy,))
v is a node that co-occurs near u on fixed-length random walks
o is the sigmoid function. () is the number of negative samples

P, (v) is a negative sampling distribution, based on the node
frequencies in the entire node sequences

It trains a unique embedding representation for each node via a
representation look-up table

How to incorporate node attributes in deep architectures?
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Property preserving network embedding
(BT 1] Ny Ny N3 Ny N Ng

nq
np
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Attributes Defined by Attributes !
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Compute the node similarity matrix S defined by node attributes
Objective function: J = JpecpWalk + > Svid(v, 1)

1€pos(v)Uneg(v)
Sus is the attribute similarity between u and i

d(v,i) = \/(hv —h;) " (h, —h;) measures distance in embedding space

pos(v) and neg(v) are sets of top-k similar and dissimilar 149
nOdeS according to S Li et al., “PPNE: Property Preserving Network Embedding”, DASFAA, 2019.



Graph neural networks
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e Key ideas of graph convolutional networks and GraphSage:
o Use node attributes or random vectors as initial latent representations

o Each node’s representation is learned via averaging its neighbors’
representations in previous layer

e |t could be considered as a first-order approximation of spectral
graph convolutions
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Hamilton et al., “Inductive Representation Learning on Large Graphs”, NIPS, 2017.



Graph recurrent networks with attributed walks

Node Attributes As Weighted Edges
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AttriWalk: Attributed Random Walks

GraphRNA [Huang et al. KDD, 2019]
e A unified walking mechanism is proposed to jointly sample networks
and node attributes

e Graph recurrent network (GRN) could preserve node order
information

e Nodes are allowed to interact in GRN via the same way as they
interact in the original attributed network 44



A joint walking mechanism - AttriWalk
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Graph recurrent neural networks - GRN
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e Pooling layers combine
indices within each
sequence, and combine
all sequences of each node

¢ |t concatenates the first embedding representation for self loop
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Task-specific objective function & multiple sources

Node Attributes As Weighted Edges
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AttriWalk: Attributed Random Walks

e GraphRNA could be trained with an unsupervised, supervised, or
task-specific objective functions, e.g.,
L=— Z y; log(softmax(c(h;Wj, 4+ by)))
%
e Graph neural networks could be an embedding model or an end-to-
end model for different tasks !



Mining attributed networks with deep embedding

e Focuses:
Deep architectures for networks & joint learning

e Methods:
Objective function based deep embedding

Graph neural networks

e Architectures:
Graph convolutional networks

Graph recurrent networks — "‘ _____________
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