Attributed network embedding

0 Mining attributed networks with shallow embedding
Coupled spectral embedding
Coupled matrix & tri-factorization
Random walk based embedding
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Coupled spectral embedding

Spectral embeddlng on plaln networks:

minimize Zng \/7H2 TraceUT(:[ D_EGD__)U]

u 9 LS N N
zgl

Normalized Graph Laplacian

For each pair of nodes i and j, larger g;; tends to make their vector
representations more similar

Spectral Graph Theory: Eigenvalues are strongly connected to
almost all key invariants of a graph

How to extend spectral embedding to attributed networks?
o Challenges: Heterogeneity & Large Scale
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Label informed attributed network embedding

1L Label Informed Embedding!

LANE [Huang et al. WSDM, 2017]

e Goal: embed nodes with similar network structure, attribute
proximity, or same label into similar vector representations
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Couple embedding via correlation projection

g gl u®
Attributed Network G : i e em_[ Spectral | i %:
' Technique v
11 (8]
mi® Oy

I. Attributed Network Embedding

e Though network G, node attributes A, labels Y are heterogeneous,
node proximities defined by G, A, Y are homogeneous

e We map the node proximities in network and node attributes into
two latent representations U“’ and U via spectral embedding
and fuse them by extracting their correlations

.. T T T T
maximize Tr(U@ ' £OUD 4 oUW ' £AOUW 4 qu» TU@U©@ 'uW)
U(©) ulA) 17



Uniform projections

116N

_ Correlation
E» Prog'e_ctions
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I. Attributed Network Embedding J}b T
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Corresponding Labels Y: 13 i i
P g n, Label Modeling Based on Homophily A ym
n
HZ I1. Label Informed Embedding

e Consider nodes with the same label as a clique, and employ the
learned network proximity to smooth the label information
maximize Tr (U(Y)T([,(YY) + U(G)U(G)T)U(Y))
U@ uly)

e Uniformly project all of the learned latent representations into H

maximize Tr (HT(U<G)U(G)T 4 ULy’ 4+ U(Y)U(Y)T)H)
UG ud) ul¥) "
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Experimental results
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e LANE and its variation outperform Original Features

e LANE achieves significantly better performance than the state-of-
the-art embedding algorithms 19



Summary of coupled spectral embedding

|. Convert node attributes into a network by computing the affinity
matrix and couple multiple spectral embedding
o Label informed attributed network embedding, WSDM 2017

o Co-regularized multi-view spectral clustering, NIPS 2011

.. T T T T
m{a%lm(li)e Tr(U(G) E(G)U(G) —|—OAU(A) E(A)U(A) —|—OAU(A) U(G)U(G) U(A))
uG) U

o ANE for learning in a dynamic environment, CIKM 2017

m Initialization:

maximize pTU(G)TU(G)p + pTU(G)TU(A)q + qTU(A)TU(G)p + qTU(A)TU(A)q
P.q

m Joint representations:
H = [U“, U] x [P, Q]
20



Summary of coupled spectral embedding

ll. Leverage spectral embedding to handle networks and couple with

other low-rank approximations, including matrix factorization
o Exploring context and content links in social media, TPAMI 2012
minimize || A — H||Z + ATrace[H' (D — G)H] + ~|H|.

o Attributed signed network embedding, CIKM 2017
m Use spectral embedding to encode node attribute affinity matrix

1. Spectral filters in graph neural networks
o Eigenvalues & Eigenvectors are identified as the frequencies of graph &
graph Fourier modes

o CNN on graphs with fast localized spectral filtering, NIPS 2016
o Semi-supervised classification with graph convolutional networks, 2016
o GCN networks with complex rational spectral filters, 2019
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Coupled matrix & tri- factorization

e Learning a unified representation from two matrices is trivial

W

w

\&}
T

min |G — HU|j + oA - HV|§
H, UV
<100 | | | e Intuitive solutions:
! T AiSpe| o Combining Content and Link for Classification
A/ANIEJW using Matrix Factorization, 2007 (LCMF)
| FaWak | min |G — HUH' i + of|A = HV|[§ + v U[l; + 8 V]
1-/ Out of Time 1
# | o Focuses:
F o Factorizing networks
o Improving efficiency
1 15 2 25
Num of Instances N x10°

22



Accelerated attributed network embedding
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AANE [Huang et al. SDM, 2017]
e (Goal: Preserve the network & node attributes into a unified latent
representation, in an efficient way

e AANE accelerates the optimization by decomposing it into low
complexity sub-problems 23



Network structure modeling

Objective function: min  J = [|S - HH' |7 +I>\ Z gijllhs — Ry}

Network Lasso
Network lasso [Hallac et al. KDD, 2015]:

o If we use squared norms, it would reduce to Laplacian regularization
o A generalization of group lasso, encouraging h; = h; across the edge
o Foreachedgeitoj, set {(h;;—h;;), (hiz—hj2),...} as agroup

o Group lasso: Hgn ly — X85 + A Z 18z]|2

.....

A adjusts the size of clustering groups

?,-norm alleviates the impacts from outliers and missing data
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Incorporating node attribute affinities

Similarity
s oy _mmy
mQ O o 5 Objective functions:
O ny Ny Mg Ny Ng Mg . T ____________________'i
ge)tworkandWeights z; mﬁn J = HS HH HF I)\ Z ngHh J”2i
©—0 e G I (i,5)€E |
i Im rEaEEE-- 00 FTmEeTmTTomTemEmmem T =
iy Network Lasso

Attributed Network ¢

e Though network & node attributes are heterogeneous info, node
proximity defined by attributes is homogenous with network

e Based on the decomposition of similarities defined by attributes and
penalty of embedding difference between connected nodes 25



Acceleration via distributed optimization

e N
Problem (1) Sq -2 X yAS ... Problem (5) = X 7T
Sg 2
Compute H:
Problem @ S, =m X ZT <+« |Problem @ — X ZT
\ Se ? )
Update ) Update
e N
Problem (7) = X ') -++ -Problem (1) = X 7
T
S, H Sg H
Compute Z:
Problem = X 7 +++ | Problem @2 = X 7
T T
S, H S¢ H
\ J
Worker 1 Worker 3

Make sub-problems mdependent to each other to allow parallel
computation 26



Low-complexity independent sub-problems

Make a copy of H, named Z

Reformulate objective function into a linearly constrained problem

min Z sihiZ 34X Y gisllhi — gl
(4,5)€€
subject to h,=2z;,1=1,...,n

Given fixed H, all the row z; could be calculated independently

Each sub-problem only needs row s;, not the entire S

Time complexity of updating h; is O(d> + dn + d|N(7)
complexity O(n)

), with space
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Summary of coupled matrix & tri- factorization

|. Accelerate coupled matrix factorization via distributed optimizations
o Accelerated attributed network embedding, SDM 2017

o Accelerated local anomaly detection via resolving AN, [JCAI 2017

: T2 2 2 2
= min IG-HH |z + oA -HVz +~(H|z +[[VIz)
m A parallel mini-batch SGD to accelerate the optimization
T)12 2
IG — HH||¢ IA — HV||g
Ry by by [hG| RS- Wiv, vy ve v vy
h]_ gl,l g1,2 91,3 91,4 g1,5' . gl,n h1 .al,l al'z a1'3 a1‘4 a1’5 0o 'al,m
h, 921 922 923 924 Y25---Y92n h, Azq Qzp Qp3 Ayy Qps-- Ay
hs 931 932 933 593,415 935---93n h; iag,li Az, Q33 A3, A3s-- A3y,
| | 941 912 Gus Gun Gus - Ganl| || | @aniasz aus gy Gus . Gupd
hs 9s1 9s2 953 595,45 9ss...95n hs ia5,1§ s, As3 A5y Ass .. .05y,
hn i Ini 9n2 Gn3 LQ_QA.: Gns - -g}l,n_ hn _E.G_rl_.ﬁ An, Gnz Any Aps - .an',m_ 28




Summary of coupled matrix & tri- factorization

Il. Modeling networks via matrix tri-factorization
o Network Representation Learning with Rich Text Information, IJCAI 2015
m Let T be the transition matrix of the PageRank on G, and M = (T + T?2)/2

: A
emin M -HVAT|R + SOH]E + [V]7)
o Preserving Proximity and Global Ranking for Network Embedding, 2017

m Lemma: Matrix tri-factorization H' VH ~ MPM! preserves the second-order
proximity, where (shifted) pointwise mutual information is defined as follows

max{0, log CERACIV DR PP af, if (i,j) € €

MPMI — DPs (Z)pt(.])
0, otherwise
L 1 ] degreeéu ) degreeijn
u ps,t(zaj)zﬁ,ps(z): |g’ t’ pt(]): ‘g‘

m Negative values are filtered since less informative [Levy and Goldberg, 2014]
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Random walk based embedding

0.54  0.277

M- 0.22 091
0.55 0.28

H=1098 0.11
032 0.87

L0.26 0.11-

e Random walks on plain networks:
o Conduct random walks on a network and record the walking trajectories
o Treat nodes as words and sequences as sentences to learn embedding

e Nodes’ co-occurrence probabilities = linking probabilities

e It converts geometric structures into structured sequences while
alleviating the issues of sparsity and curse of dimensionality

e Random walks on attributed networks? (Heterogeneity)

Word2vec Figure from Franziska Horn, “Context Encoders as A Simple But Powerful Extension of Word2vec”, 2017.
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Large-scale heterogeneous feature embedding

Feature __, Homogeneous ™ "7 "0

|
[
Walks Source Q) : = {9} T Technique to ! | CQ/
% Learn Final H .
. [
""" . - Walk Through Features: @ —a;—Q@

FeatWalk [Huang et al. AAAI, 2019]

e Goal: Incorporate multiple networks & multiple types of high-
dimensional node attributes into a unified latent representation

e E.g., amazon products have product info, customer reviews, etc.
Networks: customer purchase record, & customer viewing history 31
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Learn node proximities to handle heterogeneity

A1A7A3 vavues Ay O O
Isita\ Yes \
x (i) —’@‘O P
(5 4

Network
No V

| . Feature _, Homogeneous oceeoee _){Q (i)} —> Embedding to

(2) .

e Node proximity: Similarities between nodes defined by links or
attributes of nodes, i.e., rows of each X

e Node proximities learned from different {X(¥} are homogeneous

o FeatWalk projects each node proximity into a set of node
sequences O, and learns H from all {Q"}
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The intuitive solution

wazas | [ Jag | |

_laz ad

g
Node Similarities
Node Attributes Defined by Attributes

e Tolearn Q(i), intuitive solution is to compute node similarity matrix
S based on A, and perform random walks on S

e Random Walks: In Q(i), a sequence of node indices, probability of i
follows j approaches their similarity in S

e EXxpensive: S is dense with n X n dimensions 33



Equivalent similarity-based random walks

Proposed Equivalent Distributed Algorithm

‘—-—-—-—-—-—-—-—-—-—-—-
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‘Walk Through Feat '
Wa rough Features: () — a5 — ) ‘

e [heorem 1. Probability of walking from i to j via FeatWalk is equal
to the one via random walks on S, where
S=YDY'

e Y is the node attribute matrix after special normalizations

e FeatWalk learns the same sequences as the intuitive solution, while
avoiding the computation of node similarities S 34



Feat\Walk walks via features

Given the initial (), we walk Proposed Equivalent Distributed Algorithm
o SN, WE IR R AT Al ey N
to the m™" attribute category ( :
. - I
with probability |
. Zﬁ‘im A10303 ceures Am I
P(i = am) = —57— I @) — — @O
p=1 Lip I W |
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|
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Summary of FeatWalk

10,05 ... G AN e e e e -
X (0) O— '@ -0 - @0
: :
6—0 .9 _ !
Network Random Walks
No 1
0.54 0.27
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Walks Source Q(V): {QWy 098 0.11
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Scalable Word Embeddiﬁg

e Project each node proximity into a set of node sequence Q)
e Consider nodes as words and truncated sequences as sentences

e Apply a scalable word embedding technique to all {9} to learn a
joint embedding representation H 36



8000

—6000 |

(

1ime

Running T

Efficiency evaluation

4000 |

2000 ¢

* --#- LCMF
: -A-MultiSpec
AANE
+-w/o FW |
-o-FeatWalk
+ 4
ST Out of Time
L
SaA
.: /
0. .. /
Q.. 0. /
¥ £
2 3 4 5
Num of Instances N x10*

Running Time (s)

ot
T

W
T

w
T

(\]
T

e Running time of FeatWalk is almost linear to N

e FeatWalk achieves a significant acceleration compared to the

intuitive solution w/o_ FW
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Summary of random walk based embedding

Word2vec: Distributed Representations of Words and Phrases and their Compositionality
DeepWalk: Online Learning of Social Representations

Skip-Gram Model & .
Negative Sampling

FeatWalk: Large-Scale Heterogeneous Feature Embedding
TriDNR: Tri-Party Deep Network Representation
Gat2vec: Representation Learning for Attributed Graphs

Word2vec: words > surrounding words [2013]
DeepWalk: nodes > : neighbors [2014]
neighbors defined by edges [2019]

nodes with same attributes

B

FeatWalk: nodes >

| nodes ' neighbors defined by edges 2016
TriDNR - attributes > nodes with same attributes [2019]38
GatZvec  |gpels ' nodes with same labels [ ]



Mining attributed networks with shallow embedding

e Focuses:

Joint learning, embedding networks, & accelerating optimization

e Methods:
Coupled spectral embedding
Coupled matrix & tri-factorization
Random walk based embedding

e Techniques:
Spectral graph theory, Coupling,
distributed optimization, joint
random walks, etc.
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