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Attributed network embedding

O Motivations & challenges
What are attributed networks and why embedding
Formal definitions and challenges
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Example of node attributes

Texas A&M University @ @TAMU - Jun 7 v
A new $1 million @ENERGY grant will help @ TAMUEngineering explore the use

of big data, A.l., & machine learning to bolster power grids! #tamu

Big Data Analytics Could Reduce Power Grid Outages - Texas A&M T...

A Texas A&M team will use a $1 million Department of Energy grant for
research that could improve assessment of events that affect power sys...

today.tamu.edu
Q n 3 Q2 B

Texas A&M University @ @TAMU - Jun 7 v
Texas A&M is ranked No. 8 in the nation in this year's @schoolsEDU 'Best

Colleges' survey! Whoop! = ¢ #tamu

Apple 15" MacBook Pro|
by Apple

Customer Reviews
WRWWYT 623

4.3 out of 5stars ¥

Capacity: 15 Inch, 2.9GHz Intel Core i7

sstar [ 64% Change

4 star |_| 8% Price: $2,599.00 + Free shipping
3 star 6%
2 star 5%

I
|
1star [ ] 17%

Write a review

Top positive review
See all 450 positive reviews »

59 people found this helpful
VoY Yrr 7Y It's a Macbook Pro Maxed out from 2016
By Timothy D. Gray on January 23, 2018

Many of the negative reviews here are from people that either don't
understand computers or bought during the short time the specs posted
by amazon as to what people were buying were wrong. Amazon has now
fixed that and what you see is now accurate.

networks, & paper abstracts in citation networks



Attributed networks are prevalent in practice
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Nodes Have
Different Attributes

° Node attributes: a rich set of data describing the unique
characteristics of each node



Node attributes & network are correlated

Texas A&M Universitya Tweets Following Followers Likes Lists
@TAMU 18.7K 1,733 258K 12.3K 8

TETAS:&&‘ UNIVERSITV. ' l

§\ND YOou,

chool of Jnm?ﬁ'

o
o
o

Texas A&M School of Innov... Academic Success Center
@TAMUischool @SuccessTAMU

Official account for the School of This is the official Twitter page of the
Innovation, "I-School," at @tamu-- Academic Success Center at Texas A&M
Connecting Ags across campus to University.

multiply the impact of A&M on the...

e Node attributes and network influence each other and are inherently
correlated
o Explained by Homophily & social influence
o High correlation of user posts & following relationships
o Strong association between customer reviews & co-purchasing networks /



Hypothesis testing on correlation

Dataset Scenarios CorrCoef p-value
Real-world 3.69e-002 0.00e-016
BlogCatalog RandomMean 3.14e-005 0.18

RandomMax 1.40e-003 4.42¢e-016

Real-world 1.85e-002 0.00e-016
Flickr RandomMean 2.15e-005 0.49
RandomMax 5.48e-004 3.37e-003

e Hypothesis: there is no correlation between network affinities and
node attribute affinities (a significance level of 0.05)

e CorrCoef: Pearson correlation coefficient of two types of affinities

e Real-world network vs randomly-generated networks
o Mean and max results of 100 synthetic networks



Attributed network embedding

Network & Node Attributes Embeddmg Off-the-shelf Tasks
mn mnensne  Representation ML Algorithms
2; * Clustering
e G 0.54 0277 ™ + Link Prediction
n 022 091|m . e
n, 055 0.28[ n, \ Classification
103 wveves Gy E> 098 0.11|n, X E> . Visuali;g;iqg
ny 0.32 0.87] n;s OF . Al B
n2 L0.26 0.114 ng¢
n atent Space
nz A <«—Latent Space—>
n
y H

e Given G and A, we aim to represent each node as a d-dimensional
vector h;, such that H can preserve node proximity both in network
and node attributes 9



Why attributed network embedding

e Traditional graph theory based analysis achieves suboptimal in

large-scale networks with complex tasks
o Shortest path, maximum flow, centrality

e Aim to take advantage of off-the-shelf machine learning algorithms

e Provide general ways to handle the
heterogeneous info in networked

systems

o Friend recommendation: social links,
textual posts, categorical attributes,
images.

o Taxi demand forecast: region networks,
demographic and meteorological data.
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Challenges heterogenelty & large scale

Texas A&M University @ @TAMU - Jun 7 v
Aew$1mm @ENERGYg lwﬂlhlp@TAMUEg ing explore the

of big data, A.l., & machine leal gthpwegd #tamu

Big Data Analytics Could Reduce Power Grid Outages - Texas A&M T...

(R 1, “ . R T, A Texas A&M team will use a $1 million Department of Energy grant for
esearch that could improve assessment of events that affect power sys...

Q nus QO = [

Texas A&M University @ @TAMU - Jun 7 v
Tex: A&M deBth nation in this year's @schoolsEDU 'Best

Col II eges' survey! Whoop! = ¢ #tamu

e Difficult to jointly assess node proximity from the heterogeneous

information
o Distinct modalities: topological structures & node attributes

e Number of nodes and dimension of attributes could be large

o It could be expensive to store or manipulate the high-dimensional
matrices such as node attribute similarity 11



https://euobserver.c

Real-world attributes are high-dimensional

Number of tweets posted by all current MEP per day. (MEP: European Parliament)

The dotted line presents the final day of the latest European Parliament elections

2000

Tweets per day

o
o
o

2010 2012 2014 2016 2018

*Calculated on a 31 days rolling average for clarity

12



Data characteristics vary significantly

Product Information Customer Reviews Apple 15" MacBook Pro|
ity: 2 i7, N 115" g AAAA A
Capacity:15 Inch, 2.9GHz Intel Core i7, 16GB RAM, 512GB SSD | Style:15" w/ Touch Bar | Color:Space Gray R R 623 by Apple
. . A 4.3 out of 5 stars ¥
Technical Details Collapse all outor>stars Capacity: 15 Inch, 2.9GHz Intel Core i7,
r Summary 5 star 64% Change
astar [] 8% Price: $2,599.00 + Free shipping
Screen Size 15 inches 3 star D 6%
Max Screen Resolution 2880x1800 pixels 2star || 5% . .
. Write a review
1 star \_‘ 17%
Processor 2.9 GHz Intel Core i7
RAM 16 GB DDR3 SDRAM
Hard Drive 512 GB Flash Memory Solid State Top p05|t|ve review

See all 450 positive reviews »
Graphics Coprocessor Radeon Pro 560 59 people found this helpful

AAAAA
Chipset Brand intel
By Timothy D. Gray on January 23, 2018

Card D ipti Dedicated . . .
AL RIS edicate Many of the negative reviews here are from people that either don't

Number of USB 3.0 Ports 2 understand computers or bought during the short time the specs posted
by amazon as to what people were buying were wrong. Amazon has now

(e CEtER i (m ey 10 hours fixed that and what you see is now accurate.

e Different types of useful heterogeneous info, such as multiple

networks, multiple types of node attributes, & labels
o Facebook: attributes in introduction, words in posts, content in photos,
predefined groups etc.

o Amazon: product info, customer reviews, customer purchasing records, 13
customer viewing history, etc.



Attributed network embedding

0 Mining attributed networks with shallow embedding
Coupled spectral embedding
Coupled matrix & tri-factorization
Random walk based embedding

Q

14



Coupled spectral embedding

Spectral embeddlng on plaln networks:

minimize Zng \/7H2 TraceUT(:[ D_EGD__)U]

u 9 LS N N
zgl

Normalized Graph Laplacian

For each pair of nodes i and j, larger g;; tends to make their vector
representations more similar

Spectral Graph Theory: Eigenvalues are strongly connected to
almost all key invariants of a graph

How to extend spectral embedding to attributed networks?
o Challenges: Heterogeneity & Large Scale

15



Label informed attributed network embedding

1L Label Informed Embedding!

LANE [Huang et al. WSDM, 2017]

e Goal: embed nodes with similar network structure, attribute
proximity, or same label into similar vector representations

A) | i
UF ) Correlation !
R b C
Spectral Egn : Projections i 0.54 0.27
Technique vE | SN 022 091
— = Informed 0.55 0.28
(G) & ] I = ’
U " H = H=ges 011
1 AN N 7 !
I Attributed Network Embedding . .o 37 0.32 087
et ket SRR R 026 0.11
\9\6; \ < Latent Space=>
Label Modeling Based on Homophily N u®

16



Couple embedding via correlation projection

g gl u®
Attributed Network G : i e em_[ Spectral | i %:
' Technique v
11 (8]
mi® Oy

I. Attributed Network Embedding

e Though network G, node attributes A, labels Y are heterogeneous,
node proximities defined by G, A, Y are homogeneous

e We map the node proximities in network and node attributes into
two latent representations U“’ and U via spectral embedding
and fuse them by extracting their correlations

.. T T T T
maximize Tr(U@ ' £OUD 4 oUW ' £AOUW 4 qu» TU@U©@ 'uW)
U(©) ulA) 17



Uniform projections

116N

_ Correlation
E» Prog'e_ctions
V 3 I, \\
U® - ! Informed’,
. . H
N 4
I. Attributed Network Embedding J}b T
I 1, s o,
n, ¢
n, .
Corresponding Labels Y: 13 i i
P g n, Label Modeling Based on Homophily A ym
n
HZ I1. Label Informed Embedding

e Consider nodes with the same label as a clique, and employ the
learned network proximity to smooth the label information
maximize Tr (U(Y)T([,(YY) + U(G)U(G)T)U(Y))
U@ uly)

e Uniformly project all of the learned latent representations into H

maximize Tr (HT(U<G)U(G)T 4 ULy’ 4+ U(Y)U(Y)T)H)
UG ud) ul¥) "

18



Experimental results

1 \
- DeepWalk — B B M
(Dimension:lS, 107) 0.8 I [ LINE _ o m M
|| g LoMF _
0.8 *mrere 4 ----------------- . . AT Paadan :lSpecComb M
' P [ MultiView
o ¢+’0_0—0-0-0'0'0'0'0'0'9'9-6-6- 0.6 || [ JLANE
—
o} o
: go s
@
= 0.6 | B
- CH & 04|
¥ . -0 - LANE_on_Net
N - +- LANE_w/o_Label
/]
041 4 —a— LANE B 02l
e | usu=as Original Features
| | \ \
0 20 40 60 80 100
0
Embedding Representation Dimension d 20 60 100 140 180
Embedding Represen tation Dimension d

e LANE and its variation outperform Original Features

e LANE achieves significantly better performance than the state-of-
the-art embedding algorithms 19



Summary of coupled spectral embedding

|. Convert node attributes into a network by computing the affinity
matrix and couple multiple spectral embedding
o Label informed attributed network embedding, WSDM 2017

o Co-regularized multi-view spectral clustering, NIPS 2011

.. T T T T
m{a%lm(li)e Tr(U(G) E(G)U(G) —|—OAU(A) E(A)U(A) —|—OAU(A) U(G)U(G) U(A))
uG) U

o ANE for learning in a dynamic environment, CIKM 2017

m Initialization:

maximize pTU(G)TU(G)p + pTU(G)TU(A)q + qTU(A)TU(G)p + qTU(A)TU(A)q
P.q

m Joint representations:
H = [U“, U] x [P, Q]
20



Summary of coupled spectral embedding

ll. Leverage spectral embedding to handle networks and couple with

other low-rank approximations, including matrix factorization
o Exploring context and content links in social media, TPAMI 2012
minimize || A — H||Z + ATrace[H' (D — G)H] + ~|H|.

o Attributed signed network embedding, CIKM 2017
m Use spectral embedding to encode node attribute affinity matrix

1. Spectral filters in graph neural networks
o Eigenvalues & Eigenvectors are identified as the frequencies of graph &
graph Fourier modes

o CNN on graphs with fast localized spectral filtering, NIPS 2016
o Semi-supervised classification with graph convolutional networks, 2016
o GCN networks with complex rational spectral filters, 2019
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T

Running Time (s)

Coupled matrix & tri- factorization

e Learning a unified representation from two matrices is trivial

W

w

\&}
T

min |G — HU|j + oA - HV|§
H, UV
<100 | | | e Intuitive solutions:
! T AiSpe| o Combining Content and Link for Classification
A/ANIEJW using Matrix Factorization, 2007 (LCMF)
| FaWak | min |G — HUH' i + of|A = HV|[§ + v U[l; + 8 V]
1-/ Out of Time 1
# | o Focuses:
F o Factorizing networks
o Improving efficiency
1 15 2 25
Num of Instances N x10°

22



Accelerated attributed network embedding

Similarity L
4z .. A ™ M2 M3 14 15 Tl |— Worker 1: [ I— Worker t: !
" ( [ )
ny . |1 Problem @ S My HT : +.. |Problem ® HT :
Attributes n, n Split |: [ |
LTI || St Rt S R R . |
Q—@ 5 ”5 I | i | EEE 0 i
Ng Ng| H H | .
m .ﬂ] !Problem@ S5 =y ¥ HT | !Pr blem (&) HT |
O Q My Ny N3 Ny N5 N I [ | I |
. ny | : | :
Network and Weights_,,, i ! | sg 2 I)
O O - G i Updatih !
ny ! atihg :
Wi g n ; = i
ng| iPrblm@ = x2 !...iprblm@ — 2 I
Attributed Net k : T | : T |
ributed Network G 054 0271m i %1 H b 5 H !
0.22 0910 i b !
H= 832 8%513 23 Converge| , . n® x 2 L. | Problem @ = 2!
. . 4 : | : |
032 0.87|ns ! s H oo s H ;
0.26 0.1111n4 ! i i
< Latent Space > === = ! R N DL XY I/

AANE [Huang et al. SDM, 2017]
e (Goal: Preserve the network & node attributes into a unified latent
representation, in an efficient way

e AANE accelerates the optimization by decomposing it into low
complexity sub-problems 23



Network structure modeling

Objective function: min  J = [|S - HH' |7 +I>\ Z gijllhs — Ry}

Network Lasso
Network lasso [Hallac et al. KDD, 2015]:

o If we use squared norms, it would reduce to Laplacian regularization
o A generalization of group lasso, encouraging h; = h; across the edge
o Foreachedgeitoj, set {(h;;—h;;), (hiz—hj2),...} as agroup

o Group lasso: Hgn ly — X85 + A Z 18z]|2

.....

A adjusts the size of clustering groups

?,-norm alleviates the impacts from outliers and missing data

24



Incorporating node attribute affinities

Similarity
s oy _mmy
mQ O o 5 Objective functions:
O ny Ny Mg Ny Ng Mg . T ____________________'i
ge)tworkandWeights z; mﬁn J = HS HH HF I)\ Z ngHh J”2i
©—0 e G I (i,5)€E |
i Im rEaEEE-- 00 FTmEeTmTTomTemEmmem T =
iy Network Lasso

Attributed Network ¢

e Though network & node attributes are heterogeneous info, node
proximity defined by attributes is homogenous with network

e Based on the decomposition of similarities defined by attributes and
penalty of embedding difference between connected nodes 25



Acceleration via distributed optimization

e N
Problem (1) Sq -2 X yAS ... Problem (5) = X 7T
Sg 2
Compute H:
Problem @ S, =m X ZT <+« |Problem @ — X ZT
\ Se ? )
Update ) Update
e N
Problem (7) = X ') -++ -Problem (1) = X 7
T
S, H Sg H
Compute Z:
Problem = X 7 +++ | Problem @2 = X 7
T T
S, H S¢ H
\ J
Worker 1 Worker 3

Make sub-problems mdependent to each other to allow parallel
computation 26



Low-complexity independent sub-problems

Make a copy of H, named Z

Reformulate objective function into a linearly constrained problem

min Z sihiZ 34X Y gisllhi — gl
(4,5)€€
subject to h,=2z;,1=1,...,n

Given fixed H, all the row z; could be calculated independently

Each sub-problem only needs row s;, not the entire S

Time complexity of updating h; is O(d> + dn + d|N(7)
complexity O(n)

), with space

27



Summary of coupled matrix & tri- factorization

|. Accelerate coupled matrix factorization via distributed optimizations
o Accelerated attributed network embedding, SDM 2017

o Accelerated local anomaly detection via resolving AN, [JCAI 2017

: T2 2 2 2
= min IG-HH |z + oA -HVz +~(H|z +[[VIz)
m A parallel mini-batch SGD to accelerate the optimization
T)12 2
IG — HH||¢ IA — HV||g
Ry by by [hG| RS- Wiv, vy ve v vy
h]_ gl,l g1,2 91,3 91,4 g1,5' . gl,n h1 .al,l al'z a1'3 a1‘4 a1’5 0o 'al,m
h, 921 922 923 924 Y25---Y92n h, Azq Qzp Qp3 Ayy Qps-- Ay
hs 931 932 933 593,415 935---93n h; iag,li Az, Q33 A3, A3s-- A3y,
| | 941 912 Gus Gun Gus - Ganl| || | @aniasz aus gy Gus . Gupd
hs 9s1 9s2 953 595,45 9ss...95n hs ia5,1§ s, As3 A5y Ass .. .05y,
hn i Ini 9n2 Gn3 LQ_QA.: Gns - -g}l,n_ hn _E.G_rl_.ﬁ An, Gnz Any Aps - .an',m_ 28




Summary of coupled matrix & tri- factorization

Il. Modeling networks via matrix tri-factorization
o Network Representation Learning with Rich Text Information, IJCAI 2015
m Let T be the transition matrix of the PageRank on G, and M = (T + T?2)/2

: A
emin M -HVAT|R + SOH]E + [V]7)
o Preserving Proximity and Global Ranking for Network Embedding, 2017

m Lemma: Matrix tri-factorization H' VH ~ MPM! preserves the second-order
proximity, where (shifted) pointwise mutual information is defined as follows

max{0, log CERACIV DR PP af, if (i,j) € €

MPMI — DPs (Z)pt(.])
0, otherwise
L 1 ] degreeéu ) degreeijn
u ps,t(zaj)zﬁ,ps(z): |g’ t’ pt(]): ‘g‘

m Negative values are filtered since less informative [Levy and Goldberg, 2014]

29



Random walk based embedding

0.54  0.277

M- 0.22 091
0.55 0.28

H=1098 0.11
032 0.87

L0.26 0.11-

e Random walks on plain networks:
o Conduct random walks on a network and record the walking trajectories
o Treat nodes as words and sequences as sentences to learn embedding

e Nodes’ co-occurrence probabilities = linking probabilities

e It converts geometric structures into structured sequences while
alleviating the issues of sparsity and curse of dimensionality

e Random walks on attributed networks? (Heterogeneity)

Word2vec Figure from Franziska Horn, “Context Encoders as A Simple But Powerful Extension of Word2vec”, 2017.

30
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Large-scale heterogeneous feature embedding

Feature __, Homogeneous ™ "7 "0

|
[
Walks Source Q) : = {9} T Technique to ! | CQ/
% Learn Final H .
. [
""" . - Walk Through Features: @ —a;—Q@

FeatWalk [Huang et al. AAAI, 2019]

e Goal: Incorporate multiple networks & multiple types of high-
dimensional node attributes into a unified latent representation

e E.g., amazon products have product info, customer reviews, etc.
Networks: customer purchase record, & customer viewing history 31

(
%8888 Scalable Word
AllSets  Embedding - ENEEERE — — @0

203 o B g e ~ . Intuitive Solution

0—0 (oot : I 'Intuifive Soluf g N
: Tt X@ s\ Yes I . . Similarity o O_)RandomC,DO_ A
X0 4 Network Q 0—'@—-0 — @O' ! - Matrix Walks |
O O I O R 1 I~_._._._Q_.Q ........... :
Network 1 Random Walks . Proposed Equivalent Distributed Algorithm
I PRroposer Zqiivaient Listribhied Agorth n

No |

|

|



Learn node proximities to handle heterogeneity

A1A7A3 vavues Ay O O
Isita\ Yes \
x (i) —’@‘O P
(5 4

Network
No V

| . Feature _, Homogeneous oceeoee _){Q (i)} —> Embedding to

(2) .

e Node proximity: Similarities between nodes defined by links or
attributes of nodes, i.e., rows of each X

e Node proximities learned from different {X(¥} are homogeneous

o FeatWalk projects each node proximity into a set of node
sequences O, and learns H from all {Q"}

32



The intuitive solution

wazas | [ Jag | |

_laz ad

g
Node Similarities
Node Attributes Defined by Attributes

e Tolearn Q(i), intuitive solution is to compute node similarity matrix
S based on A, and perform random walks on S

e Random Walks: In Q(i), a sequence of node indices, probability of i
follows j approaches their similarity in S

e EXxpensive: S is dense with n X n dimensions 33



Equivalent similarity-based random walks

Proposed Equivalent Distributed Algorithm

‘—-—-—-—-—-—-—-—-—-—-—-

5

{
| : 1
| Oalazag......am . . @O e0o0o0o0oe0
I W : S
|
]

‘Walk Through Feat '
Wa rough Features: () — a5 — ) ‘

e [heorem 1. Probability of walking from i to j via FeatWalk is equal
to the one via random walks on S, where
S=YDY'

e Y is the node attribute matrix after special normalizations

e FeatWalk learns the same sequences as the intuitive solution, while
avoiding the computation of node similarities S 34



Feat\Walk walks via features

Given the initial (), we walk Proposed Equivalent Distributed Algorithm
o SN, WE IR R AT Al ey N
to the m™" attribute category ( :
. - I
with probability |
. Zﬁ‘im A10303 ceures Am I
P(i = am) = —57— I @) — — @O
p=1 Lip I W |
I
|

We focus on the mt! attribute -Walk Through Features:() — a3 — @ |

category and walk from a,, to

() with probability 8\
O
4
5,

P(a’m_fj): Jim

= ,
Tim and Y, are normalized node attributes A =

W
Ol



Summary of FeatWalk

10,05 ... G AN e e e e -
X (0) O— '@ -0 - @0
: :
6—0 .9 _ !
Network Random Walks
No 1
0.54 0.27
0.22 091
|, | Feature __, Homogeneous ceceee _)AH Sets_) B 0.55 0.28
Walks Source Q(V): {QWy 098 0.11
o 0.32 0.87
eeco0o0oe 0.26 0.11

Scalable Word Embeddiﬁg

e Project each node proximity into a set of node sequence Q)
e Consider nodes as words and truncated sequences as sentences

e Apply a scalable word embedding technique to all {9} to learn a
joint embedding representation H 36
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1ime

Running T

Efficiency evaluation

4000 |

2000 ¢

* --#- LCMF
: -A-MultiSpec
AANE
+-w/o FW |
-o-FeatWalk
+ 4
ST Out of Time
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SaA
.: /
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¥ £
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Running Time (s)

ot
T

W
T
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T

(\]
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e Running time of FeatWalk is almost linear to N

e FeatWalk achieves a significant acceleration compared to the

intuitive solution w/o_ FW

x 10*
* -#-LCMF ||
H -A-MultiSpec
AANE
+-w/o.FW |
-o-FeatWalk
Out of Time
fee
0 05 1 1.5 D 2.5
Num of Instances N x10°
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Summary of random walk based embedding

Word2vec: Distributed Representations of Words and Phrases and their Compositionality
DeepWalk: Online Learning of Social Representations

Skip-Gram Model & .
Negative Sampling

FeatWalk: Large-Scale Heterogeneous Feature Embedding
TriDNR: Tri-Party Deep Network Representation
Gat2vec: Representation Learning for Attributed Graphs

Word2vec: words > surrounding words [2013]
DeepWalk: nodes > : neighbors [2014]
neighbors defined by edges [2019]

nodes with same attributes

B

FeatWalk: nodes >

| nodes ' neighbors defined by edges 2016
TriDNR - attributes > nodes with same attributes [2019]38
GatZvec  |gpels ' nodes with same labels [ ]



Mining attributed networks with shallow embedding

e Focuses:

Joint learning, embedding networks, & accelerating optimization

e Methods:
Coupled spectral embedding
Coupled matrix & tri-factorization
Random walk based embedding

e Techniques:
Spectral graph theory, Coupling,
distributed optimization, joint
random walks, etc.

X

H

0.98
0.32

0.54
0.22
0.55
0.26

~< Latent Space
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. | 1Problem @ Hr el m (5)
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Attributed network embedding

a

a Mining attributed networks with deep embedding
Objective function based deep embedding
Graph neural networks

a

40



Objective function based deep embedding

Obijective function of DeepWalk:

Ipeepwalk = —log(a(h, hy)) — Q - Ky, < p, (v) log(o(=h, hy,))
v is a node that co-occurs near u on fixed-length random walks
o is the sigmoid function. () is the number of negative samples

P, (v) is a negative sampling distribution, based on the node
frequencies in the entire node sequences

It trains a unique embedding representation for each node via a
representation look-up table

How to incorporate node attributes in deep architectures?

41



Property preserving network embedding
(BT 1] Ny Ny N3 Ny N Ng

nq
np

Node Node Similarities
Attributes Defined by Attributes !

Ng

S

(T
Compute the node similarity matrix S defined by node attributes
Objective function: J = JpecpWalk + > Svid(v, 1)

1€pos(v)Uneg(v)
Sus is the attribute similarity between u and i

d(v,i) = \/(hv —h;) " (h, —h;) measures distance in embedding space

pos(v) and neg(v) are sets of top-k similar and dissimilar 149
nOdeS according to S Li et al., “PPNE: Property Preserving Network Embedding”, DASFAA, 2019.



Graph neural networks

{1 sampled neigh
Se® 9 ® o0 NV ° ampled nelghbor nodes
. [ ‘ . ‘ . . - ‘ Learnable aggregator-2
"""" R T o . 2 ™ S
‘ .. ® .0. .0. ) PP e © <:I Sampled neighbors of neighbors

e Key ideas of graph convolutional networks and GraphSage:
o Use node attributes or random vectors as initial latent representations

o Each node’s representation is learned via averaging its neighbors’
representations in previous layer

e |t could be considered as a first-order approximation of spectral
graph convolutions
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Graph recurrent networks with attributed walks

Node Attributes As Weighted Edges

¥ 64
BlEE ] [T . B
Fip AN\t @\ @0mEOO v : @
Q0 —_— @) Biased O _ @EO0EO TJ#&H hy:
O O i Tail 8 ﬁrate—untﬂ)@)éé.cso—) ﬂ‘}?'ﬁ{i ‘J—ﬁﬂ _)% Pooling to J(_)int
[TEL] ai o 5 Max Length 600006 : /H 8 Representation
0—0 o OO\ y | e ﬂ&:}@ i %
. T : Sampled Graph
Attributed Network G G \b Attributed Node Recurrent = ®%ecee @
Interactions Neural
B0 Networks

AttriWalk: Attributed Random Walks

GraphRNA [Huang et al. KDD, 2019]
e A unified walking mechanism is proposed to jointly sample networks
and node attributes

e Graph recurrent network (GRN) could preserve node order
information

e Nodes are allowed to interact in GRN via the same way as they
interact in the original attributed network 44



A joint walking mechanism - AttriWalk

0,0,05 ......0,,
Construct a bipartit twork Flip A NJead .
onstruct a bipartite networ Binsed e &\ il
based on A A Coi
Tail* Q#)@I
Flip a biased coin in each step o\
If head, walk two steps on \é)
the bipartite netwprk . @OEOOO0
o Jump to an attribute category §, '< @EEOHO
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476,413
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walks; walks on A increase the diversity and flexibility 45



Graph recurrent neural networks - GRN

e Hidden state

sequences in S a009
RNN naturally OHOO00
accord with 8000600
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. . Attributed Node
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e Pooling layers combine
indices within each
sequence, and combine
all sequences of each node

¢ |t concatenates the first embedding representation for self loop
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Task-specific objective function & multiple sources

Node Attributes As Weighted Edges

| T EEEEEmmEE |
i Y
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. @ © T : Sampled Graph o
Attributed Network G G Attributed Node Recurrent 2 ©®®eeee @
80 Interactions Neural

Networks
AttriWalk: Attributed Random Walks

e GraphRNA could be trained with an unsupervised, supervised, or
task-specific objective functions, e.g.,
L=— Z y; log(softmax(c(h;Wj, 4+ by)))
%
e Graph neural networks could be an embedding model or an end-to-
end model for different tasks !



Mining attributed networks with deep embedding

e Focuses:
Deep architectures for networks & joint learning

e Methods:
Objective function based deep embedding

Graph neural networks

e Architectures:
Graph convolutional networks

Graph recurrent networks —_— "‘ _____________
® ® o . ___________________ (.Q. ______
L IFIE S A S O an?®
@) ..ﬂ == .. ..‘ - = @ ®
IYY. ® oo "o 0 ©®



Attributed Network Embedding

O Motivations & challenges

0 Mining attributed networks with shallow embedding
Coupled spectral embedding
Coupled matrix & tri-factorization
Random walk based embedding

O Mining attributed networks with deep embedding
Objective function based deep embedding
Graph neural networks

O Human-centric network analysis
Interpretable node representation learning
Attributed network analysis with humans in the loop
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Interpretable node representation learning
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[Liu et al. WSDM, 2019]
e Opacity of embedding space

o How representation vectors distribute in the embedding space?
o What information is encoded in different embedding space regions?
o Existing methods for explaining classifiers are not directly applicable

e Comprehensible node attributes are available

e Goal: Mining explainable structures and identifying characteristic
factors from the mass of representation vectors



Spatial encoding and multimodal analytics
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Spatial encoding
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The spatial code for node n is Pn

= [f)n,l’ ﬁn,z’ "

Pni1=€enWLWL_1..

°’pn,L—l’ f)n,L]

W)

e, € RN is a one-hot vector,
where e,(i)=1fori=n
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Multimodal autoencoder

e y are comprehensible node v o IS o |o 5

. Node —p| i =P : | Yy
attributes Attributes L] : : . : :
. © O O © ©

e Variational autoencoder is B S O

used to reconstruct y and ~ry NS
yandp o [@/I8\[e e

o Q| |10 “\O| 0| b

e After training the autoencoder,  spatial Code: p . - . A= HE
the interpretation for embedding ol |® : :

representation h is,
o h ~ flinear(Y) — g(p) — 95 © gE(p’ O)

o The input to the node attribute side is set to be absent
o The output from node attribute decoder is used as the interpretation 53



Attributed network analysis with humans in the loop

Initial Attributed Network mbeddlng
R Representation
LU L b 3 054 0.27]
- 00 0.22 091
. o _|oss 028
' © © I{:ZI [> H=1098 0.11
i W ; Sy 0.32 0.87
i % % 0.26 0.11-

[Huang et al. WSDM, 2018]

a

Tasks

Classification
Clustering
Link Prediction
Visualization

e Attributed network embedding (ANE) serves as infrastructures of

various real-world applications

e We aim to learn cognition from experts and incorporate it into ANE
to advance downstream analysis algorithms
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Expert cognition benefits data analysis

e Definition: Meaningful and Intelligence-related info that experts
know beyond the data

« Understanding of domain knowledge
« Awareness of conventions

« Perception of latent relations

e Example: Human understand the sentiment in product reviews. This
cognition could be applied to enhance the recommendations
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i -

K ',r |
u \ W ‘,
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Network embedding with expert cognition - NEEC
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! i 00,00 " E : !
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: Initial Attributed Cluster 1 Cluiterz : Expert Cognition
\ Network Update the Model of Cluster 2 Informed Network

Convert the abstract and meaningful cognition of domain experts
into concrete answers

Incorporate answers into ANE towards a more informative H

Employ a general and concise form of queries to learn expert
cognition from the oracle while greatly saving his/her effort 56



Strategies of framework NEEC
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e Two steps to find the top K meaningful queries
o Find few representative and distinct nodes (in red) as prototypes

o lteratively select K nodes from the remaining nodes (in blue) with the
largest amount of expected learned expert cognition

e Oracle needs to indicate a node from the prototypes (e.g.,j = 1)
that is the most similar to the queried node i =5 S7



Strategies of framework NEEC
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e Answers will be added into the network structure in the form of
weighted edges, named as cognition edges (red dotted lines)

e With these cognition edges, different ANE methods can be directly
applied to the expert cognition informed network to learn H 58



Human-centric network analysis

e Focuses:
Interpretable embedding, & utilizing network embedding to
incorporate human knowledge

e Methods:
Interpretable node representation learning
Attributed network analysis with humans in the loop

e Techniques: 7 Formlite Expent Cogntion o Edges )~ \
Linking embedding with interpretable L m Prototype Nodes: \iom |
node attributes, converting knowledge o? Oe E>°° i
into links, etc. L O o™ " QueryPook TQQﬂT

: mn QQ Q_Q |:> Contextual Bandit :
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Summary of attributed network embedding

e ANE learns low-dimensional vectors to represent all nodes, bridging
the gap between real-world systems & ML algorithms

e Challenges: Heterogeneity, large-scale, & Data Characteristics Vary
Significantly

e Compare with other research topics

o Multiview learning: Learn a unified representation of instances from
multiple feature matrices observed from different aspects

o Multimodal learning: Embed multiple sources with distinct modalities such
as networks, images, and audio

o Aftributed network embedding: Preserve proximity information in networks
and (one or multiple types of) node attributes
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Summary of Attributed Network Embedding

e Shallow attributed network embedding:
o Coupled spectral embedding
o Coupled matrix & tri-factorization
o Random walk based embedding

e Deep attributed network embedding:
o Objective function based deep embedding
o Graph neural networks

e Comprehensible node attributes help humans interact with systems.
o Interpretable node representation learning

o Attributed network analysis with humans in the loop
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