

Learning From Networks

——Algorithms, Theory, & Applications

Xiao Huang, Peng Cui, Yuxiao Dong, Jundong Li, Huan Liu, Jian Pei, Le Song, Jie Tang, Fei Wang, Hongxia Yang, Wenwu Zhu

xhuang@tamu.edu; cuip@tsinghua.edu.cn; yuxdong@microsoft.com; jundongl@asu.edu; huan.liu@asu.edu; jpei@cs.sfu.ca; le.song@antfin.com; jietang@tsinghua.edu.cn; few2001@med.cornell.edu; yang.yhx@alibaba-inc.com; wwzhu@tsinghua.edu.cn;

KDD 2019, Anchorage, USA Lecture-Style Tutorial

Attributed network embedding

- Motivations & challenges
 - What are attributed networks and why embedding Formal definitions and challenges
- Mining attributed networks with shallow embedding

■ Mining attributed networks with deep embedding

□ Human-centric network analysis

Example of node attributes

• Examples: user content in social media, reviews in co-purchasing networks, & paper abstracts in citation networks

Attributed networks are prevalent in practice

 Node attributes: a rich set of data describing the unique characteristics of each node

Node attributes & network are correlated

- Node attributes and network influence each other and are inherently correlated
 - Explained by Homophily & social influence
 - High correlation of user posts & following relationships
 - Strong association between customer reviews & co-purchasing networks

Hypothesis testing on correlation

Dataset	Scenarios	CorrCoef	p-value
BlogCatalog	Real-world	3.69e-002	0.00e-016
	RandomMean	3.14e-005	0.18
	RandomMax	1.40e-003	4.42e-016
Flickr	Real-world	1.85e-002	0.00e-016
	RandomMean	2.15e-005	0.49
	RandomMax	5.48e-004	3.37e-003

- Hypothesis: there is no correlation between network affinities and node attribute affinities (a significance level of 0.05)
- CorrCoef: Pearson correlation coefficient of two types of affinities
- Real-world network vs randomly-generated networks
 - Mean and max results of 100 synthetic networks

Attributed network embedding

• Given **G** and **A**, we aim to represent each node as a d-dimensional vector \mathbf{h}_i , such that **H** can preserve node proximity both in network and node attributes

Why attributed network embedding

- Traditional graph theory based analysis achieves suboptimal in large-scale networks with complex tasks
 - Shortest path, maximum flow, centrality
- Aim to take advantage of off-the-shelf machine learning algorithms
- Provide general ways to handle the heterogeneous info in networked systems
 - Friend recommendation: social links, textual posts, categorical attributes, images.
 - Taxi demand forecast: region networks, demographic and meteorological data.

Challenges: heterogeneity & large scale

- Difficult to jointly assess node proximity from the heterogeneous information
 - Distinct modalities: topological structures & node attributes
- Number of nodes and dimension of attributes could be large
 - It could be expensive to store or manipulate the high-dimensional matrices such as node attribute similarity

Real-world attributes are high-dimensional

Number of tweets posted by all current MEP per day. (MEP: European Parliament) The dotted line presents the final day of the latest European Parliament elections

Data characteristics vary significantly

- Different types of useful heterogeneous info, such as multiple networks, multiple types of node attributes, & labels
 - Facebook: attributes in introduction, words in posts, content in photos, predefined groups etc.
 - Amazon: product info, customer reviews, customer purchasing records, customer viewing history, etc.

Attributed network embedding

■ Motivations & challenges

□ Mining attributed networks with shallow embedding

Coupled spectral embedding

Coupled matrix & tri-factorization

Random walk based embedding

■ Mining attributed networks with deep embedding

□ Human-centric network analysis

Coupled spectral embedding

Spectral embedding on plain networks:

- For each pair of nodes i and j, larger g_{ij} tends to make their vector representations more similar
- Spectral Graph Theory: Eigenvalues are strongly connected to almost all key invariants of a graph
- How to extend spectral embedding to attributed networks?
 - Challenges: Heterogeneity & Large Scale

Label informed attributed network embedding

LANE [Huang et al. WSDM, 2017]

 Goal: embed nodes with similar network structure, attribute proximity, or same label into similar vector representations

Couple embedding via correlation projection

- Though network G, node attributes A, labels Y are heterogeneous, node proximities defined by G, A, Y are homogeneous
- We map the node proximities in network and node attributes into two latent representations $\mathbf{U}^{(G)}$ and $\mathbf{U}^{(A)}$ via spectral embedding and fuse them by extracting their correlations

$$\underset{\mathbf{U}^{(G)},\mathbf{U}^{(A)}}{\operatorname{maximize}} \operatorname{Tr}(\mathbf{U}^{(G)^{\top}}\mathcal{L}^{(G)}\mathbf{U}^{(G)} + \alpha \mathbf{U}^{(A)^{\top}}\mathcal{L}^{(A)}\mathbf{U}^{(A)} + \alpha \mathbf{U}^{(A)^{\top}}\mathbf{U}^{(G)}\mathbf{U}^{(G)^{\top}}\mathbf{U}^{(A)})$$

Uniform projections

 Consider nodes with the same label as a clique, and employ the learned network proximity to smooth the label information

$$\underset{\mathbf{U}^{(G)},\mathbf{U}^{(Y)}}{\operatorname{maximize}} \operatorname{Tr} \left(\mathbf{U}^{(Y)^{\top}} (\mathcal{L}^{(YY)} + \mathbf{U}^{(G)} \mathbf{U}^{(G)^{\top}}) \mathbf{U}^{(Y)} \right)$$

• Uniformly project all of the learned latent representations into
$$\mathbf{H}$$

$$\underset{\mathbf{U}^{(G)},\mathbf{U}^{(A)},\mathbf{U}^{(Y)},\mathbf{H}}{\operatorname{maximize}} \operatorname{Tr}\left(\mathbf{H}^{\top}(\mathbf{U}^{(G)}\mathbf{U}^{(G)^{\top}}+\mathbf{U}^{(A)}\mathbf{U}^{(A)^{\top}}+\mathbf{U}^{(Y)}\mathbf{U}^{(Y)^{\top}})\mathbf{H}\right)$$

Experimental results

- LANE and its variation outperform Original Features
- LANE achieves significantly better performance than the state-ofthe-art embedding algorithms

Summary of coupled spectral embedding

- Convert node attributes into a network by computing the affinity matrix and couple multiple spectral embedding
 - Label informed attributed network embedding, WSDM 2017
 - Co-regularized multi-view spectral clustering, NIPS 2011

$$\underset{\mathbf{U}^{(G)},\mathbf{U}^{(A)}}{\text{maximize}} \operatorname{Tr}(\mathbf{U}^{(G)^{\top}}\mathcal{L}^{(G)}\mathbf{U}^{(G)} + \alpha \mathbf{U}^{(A)^{\top}}\mathcal{L}^{(A)}\mathbf{U}^{(A)} + \alpha \mathbf{U}^{(A)^{\top}}\mathbf{U}^{(G)}\mathbf{U}^{(G)^{\top}}\mathbf{U}^{(A)})$$

- ANE for learning in a dynamic environment, CIKM 2017
 - Initialization:

$$\underset{\mathbf{p},\mathbf{q}}{\text{maximize}} \quad \mathbf{p}^{\top} \mathbf{U}^{(G)}^{\top} \mathbf{U}^{(G)} \mathbf{p} + \mathbf{p}^{\top} \mathbf{U}^{(G)}^{\top} \mathbf{U}^{(A)} \mathbf{q} + \mathbf{q}^{\top} \mathbf{U}^{(A)}^{\top} \mathbf{U}^{(G)} \mathbf{p} + \mathbf{q}^{\top} \mathbf{U}^{(A)}^{\top} \mathbf{U}^{(A)} \mathbf{q}$$

■ Joint representations:

$$\mathbf{H} = [\mathbf{U}^{(G)}, \mathbf{U}^{(A)}] \times [\mathbf{P}, \mathbf{Q}]$$

Summary of coupled spectral embedding

- II. Leverage spectral embedding to handle networks and couple with other low-rank approximations, including matrix factorization
 - Exploring context and content links in social media, TPAMI 2012 $\min_{\mathbf{H}} ||\mathbf{A} \mathbf{H}||_{\mathrm{F}}^{2} + \lambda \mathrm{Trace}[\mathbf{H}^{\top}(\mathbf{D} \mathbf{G})\mathbf{H}] + \gamma ||\mathbf{H}||_{*}$
 - Attributed signed network embedding, CIKM 2017
 - Use spectral embedding to encode node attribute affinity matrix

III. Spectral filters in graph neural networks

- Eigenvalues & Eigenvectors are identified as the frequencies of graph & graph Fourier modes
- CNN on graphs with fast localized spectral filtering, NIPS 2016
- Semi-supervised classification with graph convolutional networks, 2016
- GCN networks with complex rational spectral filters, 2019

Coupled matrix & tri- factorization

Learning a unified representation from two matrices is trivial

$$\|\mathbf{G} - \mathbf{H}\mathbf{U}\|_{\mathrm{F}}^2 + \alpha \|\mathbf{A} - \mathbf{H}\mathbf{V}\|_{\mathrm{F}}^2$$

- Intuitive solutions:
 - Combining Content and Link for Classification using Matrix Factorization, 2007 (LCMF)

$$\min_{\mathbf{H}, \mathbf{U}, \mathbf{V}} \|\mathbf{G} - \mathbf{H}\mathbf{U}\mathbf{H}^{\top}\|_{F}^{2} + \alpha \|\mathbf{A} - \mathbf{H}\mathbf{V}\|_{F}^{2} + \gamma \|\mathbf{U}\|_{F}^{2} + \beta \|\mathbf{V}\|_{F}^{2}$$

- Focuses:
 - Factorizing networks
 - Improving efficiency

Accelerated attributed network embedding

AANE [Huang et al. SDM, 2017]

- Goal: Preserve the network & node attributes into a unified latent representation, in an efficient way
- AANE accelerates the optimization by decomposing it into low complexity sub-problems

Network structure modeling

• Objective function: $\min_{\mathbf{H}} \quad \mathcal{J} = \|\mathbf{S} - \mathbf{H}\mathbf{H}^{\top}\|_{\mathrm{F}}^2 + \lambda \sum_{(i,j) \in \mathcal{E}} g_{ij} \|\mathbf{h}_i - \mathbf{h}_j\|_2$

- Network lasso [Hallac et al. KDD, 2015]:
 - o If we use squared norms, it would reduce to Laplacian regularization
 - \circ A generalization of group lasso, encouraging $h_i = h_i$ across the edge
 - ∘ For each edge i to j, set $\{(h_{i1}-h_{j1}), (h_{i2}-h_{j2}), ...\}$ as a group
 - \circ Group lasso: $\min_{m{eta}} \quad \|\mathbf{y} \mathbf{X}m{eta}\|_2^2 + \lambda \sum_{\mathcal{T}=1} \ \|m{eta}_{\mathcal{T}}\|_2$
- λ adjusts the size of clustering groups
- ℓ_2 -norm alleviates the impacts from outliers and missing data

Incorporating node attribute affinities

Objective functions:

$$\min_{\mathbf{H}} \quad \mathcal{J} = \|\mathbf{S} - \mathbf{H}\mathbf{H}^{\top}\|_{\mathrm{F}}^2 + \lambda \sum_{(i,j) \in \mathcal{E}} g_{ij} \|\mathbf{h}_i - \mathbf{h}_j\|_2$$
Network Lasso

- Though network & node attributes are heterogeneous info, node proximity defined by attributes is homogeneous with network
- Based on the decomposition of similarities defined by attributes and penalty of embedding difference between connected nodes

Acceleration via distributed optimization

Make sub-problems independent to each other to allow parallel computation

Low-complexity independent sub-problems

- Make a copy of H, named Z
- Reformulate objective function into a linearly constrained problem

$$\min_{\mathbf{H}} \sum_{i=1} \|\mathbf{s}_i - \mathbf{h}_i \mathbf{Z}^\top\|_2^2 + \lambda \sum_{(i,j) \in \mathcal{E}} g_{ij} \|\mathbf{h}_i - \mathbf{z}_j\|_2,$$
subject to
$$\mathbf{h}_i = \mathbf{z}_i, \ i = 1, \dots, n.$$

- Given fixed **H**, all the row z_i could be calculated independently
- Each sub-problem only needs row s_i, not the entire S
- Time complexity of updating \mathbf{h}_i is $\mathcal{O}(d^3+dn+d|N(i)|)$, with space complexity $\mathcal{O}(n)$

Summary of coupled matrix & tri- factorization

- I. Accelerate coupled matrix factorization via distributed optimizations
 - Accelerated attributed network embedding, SDM 2017
 - Accelerated local anomaly detection via resolving AN, IJCAI 2017

■ A parallel mini-batch SGD to accelerate the optimization

Summary of coupled matrix & tri- factorization

II. Modeling networks via matrix tri-factorization

- Network Representation Learning with Rich Text Information, IJCAI 2015
 - Let **T** be the transition matrix of the PageRank on **G**, and $\mathbf{M} = (\mathbf{T} + \mathbf{T}^2)/2$

$$\mathbf{m} \min_{\mathbf{H}, \mathbf{V}} \qquad \|\mathbf{M} - \mathbf{H} \mathbf{V} \mathbf{A}^{\top}\|_{\mathrm{F}}^{2} + \frac{\lambda}{2} (\|\mathbf{H}\|_{\mathrm{F}}^{2} + \|\mathbf{V}\|_{\mathrm{F}}^{2})$$

- Preserving Proximity and Global Ranking for Network Embedding, 2017
 - Lemma: Matrix tri-factorization $\mathbf{H}^{\top}\mathbf{V}\mathbf{H} \approx \mathbf{M}^{\mathrm{PMI}}$ preserves the second-order proximity, where (shifted) pointwise mutual information is defined as follows

$$\mathbf{M}^{\text{PMI}} = \begin{cases} \max\{0, \log \frac{p_{s,t}(i,j)}{p_s(i)p_t(j)} - \log \alpha\}, & \text{if } (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}$$

$$p_{s,t}(i,j) = \frac{1}{|\mathcal{E}|}, p_s(i) = \frac{\text{degree}_{\text{out}}^i}{|\mathcal{E}|}, p_t(j) = \frac{\text{degree}_{\text{in}}^j}{|\mathcal{E}|}$$

Negative values are filtered since less informative [Levy and Goldberg, 2014]

Random walk based embedding

- Random walks on plain networks:
 - Conduct random walks on a network and record the walking trajectories
 - Treat nodes as words and sequences as sentences to learn embedding
- Nodes' co-occurrence probabilities ≈ linking probabilities
- It converts geometric structures into structured sequences while alleviating the issues of sparsity and curse of dimensionality
- Random walks on attributed networks? (Heterogeneity)

Large-scale heterogeneous feature embedding

- Goal: Incorporate multiple networks & multiple types of highdimensional node attributes into a unified latent representation
- E.g., amazon products have product info, customer reviews, etc.
 Networks: customer purchase record, & customer viewing history

Learn node proximities to handle heterogeneity

- Node proximity: Similarities between nodes defined by links or attributes of nodes, i.e., rows of each $\mathbf{X}^{(i)}$
- Node proximities learned from different $\{X^{(i)}\}$ are homogeneous
- FeatWalk projects each node proximity into a set of node sequences $\mathcal{Q}^{(i)}$, and learns **H** from all $\{\mathcal{Q}^{(i)}\}$

The intuitive solution

- To learn $Q^{(i)}$, intuitive solution is to compute node similarity matrix **S** based on $\mathbf{A}^{(i)}$, and perform random walks on **S**
- Random Walks: In $\mathcal{Q}^{(i)}$, a sequence of node indices, probability of i follows j approaches their similarity in \mathbf{S}
- Expensive: S is dense with $n \times n$ dimensions

Equivalent similarity-based random walks

Theorem 1. Probability of walking from i to j via FeatWalk is equal to the one via random walks on S, where

$$\mathbf{S} = \mathbf{Y} \mathbf{D} \mathbf{Y}^{ op}$$

- Y is the node attribute matrix after special normalizations
- FeatWalk learns the same sequences as the intuitive solution, while avoiding the computation of node similarities S

34

FeatWalk walks via features

• Given the initial \bigcirc , we walk to the m^{th} attribute category with probability

$$P(i \to a_m) = \frac{\hat{x}_{im}}{\sum_{p=1}^{M} \hat{x}_{ip}}$$

• We focus on the $m^{\rm th}$ attribute category and walk from a_m to

with probability

$$P(a_m \to j) = \frac{y_{jm}}{\sum_{n=1}^{N} y_{nm}}$$

• \hat{x}_{im} and y_{im} are normalized node attributes

Summary of FeatWalk

- Project each node proximity into a set of node sequence $\mathcal{Q}^{(i)}$
- Consider nodes as words and truncated sequences as sentences
- Apply a scalable word embedding technique to all $\{\mathcal{Q}^{(i)}\}$ to learn a joint embedding representation \mathbf{H}

36

Efficiency evaluation

- Running time of FeatWalk is almost linear to N
- FeatWalk achieves a significant acceleration compared to the intuitive solution w/o_FW

Summary of random walk based embedding

Mining attributed networks with shallow embedding

Focuses:

Joint learning, embedding networks, & accelerating optimization

Methods:

Coupled spectral embedding Coupled matrix & tri-factorization Random walk based embedding

Techniques:

Spectral graph theory, Coupling, distributed optimization, joint random walks, etc.

Attributed network embedding

■ Motivations & challenges

■ Mining attributed networks with shallow embedding

- Mining attributed networks with deep embedding
 Objective function based deep embedding
 Graph neural networks
- Human-centric network analysis

Objective function based deep embedding

Objective function of DeepWalk:

$$\mathcal{J}_{\text{DeepWalk}} = -\log(\sigma(\mathbf{h}_u^{\top} \mathbf{h}_v)) - Q \cdot \mathbb{E}_{v_n \sim P_n(v)} \log(\sigma(-\mathbf{h}_u^{\top} \mathbf{h}_{v_n}))$$

- v is a node that co-occurs near u on fixed-length random walks
- ullet σ is the sigmoid function. Q is the number of negative samples
- $P_n(v)$ is a negative sampling distribution, based on the node frequencies in the entire node sequences
- It trains a unique embedding representation for each node via a representation look-up table
- How to incorporate node attributes in deep architectures?

Property preserving network embedding

- Compute the node similarity matrix S defined by node attributes
- Objective function: $\mathcal{J} = \mathcal{J}_{\mathrm{DeepWalk}} +$ $\mathbf{s}_{vi}d(v,i)$ $i \in pos(v) \cup neg(v)$
- \mathbf{S}_{vi} is the attribute similarity between u and i
- $d(v,i) = \sqrt{(\mathbf{h}_v \mathbf{h}_i)^{\top}(\mathbf{h}_v \mathbf{h}_i)}$ measures distance in embedding space
- pos(v) and neg(v) are sets of top-k similar and dissimilar nodes according to S

Graph neural networks

- Key ideas of graph convolutional networks and GraphSage:
 - Use node attributes or random vectors as initial latent representations
 - Each node's representation is learned via averaging its neighbors' representations in previous layer
- It could be considered as a first-order approximation of spectral graph convolutions

Graph recurrent networks with attributed walks

GraphRNA [Huang et al. KDD, 2019]

- A unified walking mechanism is proposed to jointly sample networks and node attributes
- Graph recurrent network (GRN) could preserve node order information
- Nodes are allowed to interact in GRN via the same way as they interact in the original attributed network

A joint walking mechanism - AttriWalk

- Construct a bipartite network based on A
- Flip a biased coin in each step
- If head, walk two steps on the bipartite network
 - \circ Jump to an attribute category δ_k
 - \circ From δ_k , jump to a node j
- If tail, walk one step on the original network G
- Walks on G inherit properties of traditional random walks; walks on A increase the diversity and flexibility

T: Sampled
Attributed Node
Interactions
45

Graph recurrent neural networks - GRN

 Hidden state sequences in RNN naturally accord with sampled node interactions

 Pooling layers combine indices within each sequence, and combine all sequences of each node

• It concatenates the first embedding representation for self loop

Task-specific objective function & multiple sources

 GraphRNA could be trained with an unsupervised, supervised, or task-specific objective functions, e.g.,

$$\mathcal{L} = -\sum_{i \in \mathcal{V}} \mathbf{y}_i^{\top} \log(\operatorname{softmax}(\sigma(\mathbf{h}_i \mathbf{W}_h + \mathbf{b}_h)))$$

 Graph neural networks could be an embedding model or an end-toend model for different tasks

Mining attributed networks with deep embedding

Focuses:

Deep architectures for networks & joint learning

Methods:
 Objective function based deep embedding
 Graph neural networks

• Architectures:

Graph convolutional networks
Graph recurrent networks

Attributed Network Embedding

- Motivations & challenges
- Mining attributed networks with shallow embedding

Coupled spectral embedding
Coupled matrix & tri-factorization
Random walk based embedding

■ Mining attributed networks with deep embedding

Objective function based deep embedding Graph neural networks

□ Human-centric network analysis
Interpretable node representation learning
Attributed network analysis with humans in the loop

Interpretable node representation learning

[Liu et al. WSDM, 2019]

- Opacity of embedding space
 - o How representation vectors distribute in the embedding space?
 - What information is encoded in different embedding space regions?
 - Existing methods for explaining classifiers are not directly applicable
- Comprehensible node attributes are available
- Goal: Mining explainable structures and identifying characteristic factors from the mass of representation vectors

Spatial encoding and multimodal analytics

Spatial encoding

The spatial code for node n is $\mathbf{p}_n = [\hat{\mathbf{p}}_{n,1}, \hat{\mathbf{p}}_{n,2}, ..., \hat{\mathbf{p}}_{n,L-1}, \hat{\mathbf{p}}_{n,L}]$

Multimodal autoencoder

- y are comprehensible node attributes
- Variational autoencoder is used to reconstruct y and p
- After training the autoencoder, the interpretation for embedding representation h is,

$$\circ \mathbf{h} \sim f_{\text{linear}}(\mathbf{y}) = g(\mathbf{p}) = g_y^D \circ g^E(\mathbf{p}, \mathbf{0})$$

- The input to the node attribute side is set to be absent
- The output from node attribute decoder is used as the interpretation

Attributed network analysis with humans in the loop

- Attributed network embedding (ANE) serves as infrastructures of various real-world applications
- We aim to learn cognition from experts and incorporate it into ANE to advance downstream analysis algorithms

Expert cognition benefits data analysis

 Definition: Meaningful and Intelligence-related info that experts know beyond the data

- Understanding of domain knowledge
- Awareness of conventions
- Perception of latent relations

Example: Human understand the sentiment in product reviews. This
cognition could be applied to enhance the recommendations

Network embedding with expert cognition - NEEC

- Convert the abstract and meaningful cognition of domain experts into concrete answers
- Incorporate answers into ANE towards a more informative H
- Employ a general and concise form of queries to learn expert cognition from the oracle while greatly saving his/her effort

Strategies of framework NEEC

- Two steps to find the top K meaningful queries
 - Find few representative and distinct nodes (in red) as prototypes
 - Iteratively select K nodes from the remaining nodes (in blue) with the largest amount of expected learned expert cognition
- Oracle needs to indicate a node from the prototypes (e.g., j=1) that is the most similar to the queried node i=5

Strategies of framework NEEC

- Answers will be added into the network structure in the form of weighted edges, named as cognition edges (red dotted lines)
- With these cognition edges, different ANE methods can be directly applied to the expert cognition informed network to learn H

Human-centric network analysis

Focuses:

Interpretable embedding, & utilizing network embedding to incorporate human knowledge

Methods:

Interpretable node representation learning
Attributed network analysis with humans in the loop

Techniques:

Linking embedding with interpretable node attributes, converting knowledge into links, etc.

Summary of attributed network embedding

- ANE learns low-dimensional vectors to represent all nodes, bridging the gap between real-world systems & ML algorithms
- Challenges: Heterogeneity, large-scale, & Data Characteristics Vary Significantly
- Compare with other research topics
 - Multiview learning: Learn a unified representation of instances from multiple feature matrices observed from different aspects
 - Multimodal learning: Embed multiple sources with distinct modalities such as networks, images, and audio
 - Attributed network embedding: Preserve proximity information in networks and (one or multiple types of) node attributes

Summary of Attributed Network Embedding

- Shallow attributed network embedding:
 - Coupled spectral embedding
 - Coupled matrix & tri-factorization
 - Random walk based embedding
- Deep attributed network embedding:
 - Objective function based deep embedding
 - Graph neural networks
- Comprehensible node attributes help humans interact with systems.
 - Interpretable node representation learning
 - Attributed network analysis with humans in the loop

Acknowledgments

DATA Lab and collaborators

- Funding agencies
 - National Science Foundation
 - Defense Advanced Research Projects Agency
- Everyone attending the talk

References

- Hongchang Gao and Heng Huang. 2018. Deep Attributed Network Embedding. In IJCAI. 3364–3370.
- Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation Learning on Large Graphs. In NIPS. 1024–1034.
- Xiao Huang, Jundong Li, and Xia Hu. 2017. Accelerated Attributed Network Embedding. In SDM. 633–641.
- Xiao Huang, Jundong Li, and Xia Hu. 2017. Label Informed Attributed Network Embedding. In WSDM. 731–739.
- Xiao Huang, Jundong Li, Na Zou, and Xia Hu. 2018. A General Embedding Framework for Heterogeneous Information Learning in Large-Scale Networks. TKDD 12 (2018).
- Xiao Huang, Qingguan Song, Jundong Li, and Xia Hu. 2018. Exploring Expert Cognition for Attributed Network Embedding. In WSDM. 270–278.
- · Xiao Huang, Qingquan Song, Fan Yang, and Xia Hu. 2019. Large-Scale Heterogeneous Feature Embedding. In AAAI.
- Xiao Huang, Qingquan Song, Yuening Li, and Xia Hu. 2019. Graph Recurrent Networks with Attributed Random Walks. In KDD.
- Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In ICLR.
- David Hallac, Jure Leskovec, and Stephen Boyd. 2015. Network Lasso: Clustering and Optimization in Large Graphs. In KDD. 387–396.
- Abhishek Kumar, Piyush Rai, and Hal Daume. 2011. Co-regularized Multi-view Spectral Clustering. In NIPS. 1413–1421.
- Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. 2017. Attributed Network Embedding for Learning in a Dynamic Environment. In CIKM. 387–396.
- Jiongqian Liang, Peter Jacobs, Jiankai Sun, and Srinivasan Parthasarathy. 2018. Semi-Supervised Embedding In Attributed Networks With Outliers. In SDM. 153–161.
- Ninghao Liu, Xiao Huang, and Xia Hu. 2017. Accelerated Local Anomaly Detection via Resolving Attributed Networks. In IJCAI. 2337–2343.
- Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. 2016. Tri- Party Deep Network Representation. In IJCAI. 1895–1901.
- Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learning of Social Representations. In KDD. 701–710.
- Guo-Jun Qi, Charu Aggarwal, Qi Tian, Heng Ji, and Thomas S. Huang. 2012. Exploring Context and Content Links in Social Media: A Latent Space Method. TPAMI 34, 5 (2012), 850–862.
- Ulrike von Luxburg. 2007. A Tutorial on Spectral Clustering. Statistics and Computing 17, 4 (2007), 395–416.
- Hongchang Gao and Heng Huang. 2018. Deep Attributed Network Embedding. In IJCAI. 3364–3370.
- Lizi Liao, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. 2018. Attributed Social Network Embedding. TKDE 30, 12 (2018), 2257–2270.
- Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y. Chang. 2015. Network Representation Learning with Rich Text Information. In IJCAI. 2111–2117.
- Shenghuo Zhu, Kai Yu, Yun Chi, and Yihong Gong. 2007. Combining Content and Link for Classification Using Matrix Factorization. In SIGIR. 487–494.
- Zhen Zhang, Hongxia Yang, Jiajun Bu, Sheng Zhou, Pinggang Yu, Jianwei Zhang, Martin Ester, and Can Wang. 2018. ANRL: Attributed Network Representation Learning via Deep Neural Networks. In IJCAI. 3155–3161.