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The problem of network representation

G=(V,E)

Complexity

Parallelizability




The problem of network representation

Pipeline for network analysis

Network
Data

Inapplicability of
ML methods
ﬁ Feature

Extracti

Network
Applications




Revisit network representation
G=(V,E) G=(V)

Vector Space

generate

embed

Easy to parallel

Can apply classical ML methods



The ultimate goal

Network Inference
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The information encoded in networks
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Topology Vectorization is the key problem.




Network Embedding

Goal Support network inference in vector space

ﬂ. l

Reflect network Maintain network
structure properties

Transitivity




Outline

- Structure-preserved network embedding

- Property-preserved network embedding

- Dynamic network embedding

- Robustness, Explainability and Applicability

- Network embedding for biomedical applications
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Network Structures

Nodes & Links
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Nodes & Links

Reconstruct the original network

Matrix Factorization
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Reconstruct all the links? May cause overfitting.

The network inference ability is seriously limited.
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High-Order Proximity

Capturing the underlying structure of networks

Second-order

1 L
P
O roximity

Or
/4 First-order
4 O Proximity

Advantages:

Solve the sparsity problem of network connections

Measure indirect relationship between nodes



Deepwalk

Exploit truncated random walk to define neighborhood of a node.
Random Walks on Graph

V26 - V25 - V32 - V3 - VlO---

Vs = Vo —Vig — Vg — Viq ...

V31 - V33 - V21 - V33 - V15

D (vy) CEEEED

(a) Random walk generation. (b) Representation mapping. (c) Hierarchical Softmax.

B. Perozzi et al. Deepwalk: Online learning of social representations. KDD 2014.



Second-order

1 Q Proximity
: /

\

First-order

4 O Proximity

LINE with First-order Proximity:
local pairwise

O = — Z wij log p1(vi, v;)

LINE with Second-order Proximity:
neighborhood structures

Oy = Z Aid(p2(-|vi), p2(-|vi))

eV

Jian Tang et al. LINE: Large-scale Information Network Embedding. WWW 20175.



SDNE - Structural Deep Network Embedding
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Daixin Wang et al. Structural Deep Network Embedding. KDD, 2016.
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Shaosheng Cao et al. GraRep: Learning Graph Representations with Global Structural Information. CIKM 2015.



What is the right order?

Different networks/tasks require different high-order proximities
E.g., multi-scale classification (Bryan Perozzi, et al, 2017)

E.g., networks with different scales and sparsity
Proximities of different orders can also be arbitrarily weighted
E.g., equal weights, exponentially decayed weights (Katz)



What is the right order?

Existing methods can only preserve one fixed high-order proximity
Different high-order proximities are calculated separately

@ © © (2
Proximity 1
Proximity2 / Proximity3 Proximity4

Embeddingl?  Embedding2 Embedding3 Embedding4

-> How to preserve arbitrary-order proximity while guaranteeing accuracy and
efficiency?



Problem Formulation

High-order proximity: a polynomial function of the adjacency matrix
S = f(4) = wiA' + woA% + -+ wy Al
q: order; wy...w,: weights, assuming to be non-negative

A: could be replaced by other variations (such as the Laplacian matrix)

Objective function: matrix factorization

min|ls — v,

U*,V* € RV*¢: |eft/right embedding vectors

d: dimensionality of the space
Optimal solution: Singular Value Decomposition (SVD)
[U,Z,V]: top-d SVD results
Us=UVI, V*=Vvx

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.



Problem Transformation

The equivalence between top-d SVD and eigen-decomposition
[U,Z,V]: top-d SVD . [A X]: top-d eigen-decomposition
U(:, i) = X(:, 1)

(i,i) = abs(A(i, 1)) ,and
V(. i) = X(:, i)sign(A(i, i))

X(:, i) = U, i)
{A(i, i) =2(i,i)sign (U(:, i) - V(:, 1))

How to solve [A, X] for S = f(4) = wi A" + wpA% + -+ 4+ w, AT

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.



Eigen-decomposition Reweighting
Eigen-decomposition reweighting

THEOREM 4.2 (EIGEN-DECOMPOSITION REWEIGHTING). If[A, X]
is an eigen-pair of A, then [F (1), x] is an eigen-pair of S = F(A).

Efficient!
Eigen-decomposition
A > |A X
lPolynomial F(C) Efficient!lPonnomiaI F()

S Eigen-decomposition [F(A) X

Insights: high-order proximity is simply re-weighting dimensions!

U* = UVE, V" = VVI
Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.



Eigen-decomposition Reweighting
Re-ordering of dimensions

As A is not necessarily positive, the top-d F(/A) may not correspond to the
top-d A
How many eigen pairs of A do we need for top-d eigen pairs of S = F(A)?
THEOREM 4.3. [ satisfies that the top | eigenvalues of A have d positive, i.e.
ll
[= LA d)=min I st > I(};>0)=d,
j=1
How largeis l: [ = 2d
Proven for random (Erdos-Renyi), random power-law networks
Verified on experiments

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.



Preserving Arbitrary-Order Proximity

Shifting across different orders/weights:

Embedding1
Shifting
/ Embedding2
Eigen-decomposition Al x /
? Embedding3
Embedding4
Efficient!

Preserving arbitrary-order proximity
Low marginal cost
Accurate and efficient

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.



Experimental Results
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Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.
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Motivation

Vertexes in different parts of the network
may have similar roles(global position)

Example :
Managers in the social network of a

Comp any, , Social network with different position
Qutliers in a network in the task of

anomaly detection

How to reflect the role or importance of a vertex in
embedding space?




Existing embedding methods

'O % OOQ
O \ Oro

irst-order
4 O Proximity

« They can only preserve local proximity(Structural equivalence), can not reflect
the global position

Embeddings of node 5,6 in left network will be similar but embeddings of node 1, 2 in
right network will not be similar.



Regular Equivalence

Two nodes are regularly equivalent if their network neighbors are themselves
similar (i.e. regularly equivalent).

& — g

Structural equivalence s Regular equivalence r
N(u) = N(v) {rMli e Nw} = {r()lj € NW)}
Direct way Recursive way
Common neighbors Similar global position

Regular equivalence is largely ignored in network embedding




Naive Solutions

e Basis. two regularly equivalent nodes should have similar embeddings

1. Explicitly calculate the regular equivalence of all vertex pairs
= infeasible for large-scale networks due to the high complexity of
calculating regular equivalence
2. Replace regular equivalence into simpler graph theoretic metrics

= centrality measures
= one centrality can only capture a specific aspect of network role

= some centrality measures also bear high computational complexity

Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.



Deep Recursive Network Embedding

- The definition of regular equivalence is recursive

Aggregating neighbors’ information in a recursive way

Li= ) |IXo - Agg({Xulu € N@)II,

veV

- How to design the aggregating function
Variable length of neighbors

Highly nonlinear
- Layer-normalized LSTM

Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.



Deep Recursive Network Embedding

reconstruct
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Sampling neighborhoods
Sorting neighborhoods by their degree
Aggregate neighbors

(a
(b
(c
(d) A Weakly guided regularizer

)
)
)
)

Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.



Theoretical Analysis

THEOREM 3.5. Ifthe centrality C(v) of node v satisfies that C(v) =
2ueN(v) F(u)C(u) and F(v) = f({F(u),u € N(v)}) where f is any
computable function, then C(v) is one of the optimal solutions of our

model.

| Centrality | DefinitionC(v) | F(v) | f({xi}) |
| Degree | dv = Yyen()[(du) | 1/do | 1/(Z1(xi) |
|Eigenvector| 1/A* X yueN(w) Cu) | 1/A | mean |
| PageRank | Yyen(o) 1/du* Cw) | 1/dy | 1/(Z1(x)) |

Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.



Experiment --- Network Visualization

(a) barbell graph

™

~’.

(b) DeepWalk

(c) LINE

? L Y

(d) node2vec

o

(e) struc2vec

(f) DRNE




Experiment --- predict centrality

‘ centrality | closeness | betweenness ’ eignvector ‘ k-core

DeepWalk 0.6016 3.7188 2.1543 13.2755
LINE 0.5153 4.3919 1.5072 15.8179
node2vec 1.0489 3.4065 3.9436 39.2156
struc2vec 0.2365 0.25371 1.0544 9.0858
DRNE 0.1909 0.1261 0.5267 5.5683

The MSE value of predicting centralities on Jazz dataset (x10-2)

‘ centrality ‘ closeness ‘ betweenness | eignvector | k-core ’

DeepWalk 0.2982 1.7836 1.1194 19.7016
LINE 0.3979 1.8425 1.5167 34.9079
node2vec 0.3573 1.6958 1.1432 24.1704
struc2vec 0.2947 1.6018 1.0445 25.3047
DRNE 0.1101 0.6676 0.3108 7.7210

The MSE value of predicting centralities on BlogCatalog dataset (x10-2)
Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.



Experiment - Structural Role Classification
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Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.



Section Summary
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Outline

- Structure-preserved network embedding

- Property-preserved network embedding

- Dynamic network embedding

- Robustness, Explainability and Applicability

- Network embedding for biomedical applications



Why preserve network properties?

Heterogeneity




Two important network properties

Transitivity Uncertainty



Transitivity

The Transitivity Phenomenon

Network Embedding Space

Triangle Inequality:D (4, B) + D(B,C) > D(A4,C)

A close to B, B close to C, — A relatively close to C

However, real network data is complex...




Non-transitivity
The Co-existence of Transitivity and Non-transitivity

Image network Social network

Collegde Classmate

S %

Word network
Apple

N

Cellphone =9¢= Banana

How to incorporate non-transitivity in embedding space?




Asymmetric Transitivity

Directed Network A—B,B—C=>A—C, butnotC —»A
0.03 0.012
g 0.025 - E o.ol '/WV
2 =
§ 0.02 Forw:ard % 0.008
% 0.015 1 %: 0.006
:§ 0.01 Backward § 0.004
o <
£ 0.005 S onn
3 8’ |
s 1 2 3 4 0
——————— 10 10 10 10 10 0 5 10 15
Number of 2-hop path Number of 2-hop path
Backward Transitive Tencent Microblog Twitter

Distance metric in embedding space is symmetric.

How to incorporate Asymmetric Transitivity?



Non-transitivity

The source of non-transitivity:

Non-transitive Transitive Transitive

Object Scene

A1 A2
dog ?‘Q\ lawn

B2

C2 --]

floor ~
T

Non-transitive Embedding: represent non-transitive data

with multiple latent similarity components

M. Ou, et al. Non-transitive Hashing with Latent Similarity Components. KDD, 2015.



Asymmetric Transitivity

All existing methods fail..
s N
Single Vector
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1 B

J
" Double Vectors
Source  Target
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Uncertainties in Networks

The formation and evolution of real-world networks are full of uncertainties

E.g., for the nodes with low degree, they contain less information and thus their
representations bear more uncertainties than others.

E.g., for the nodes across multiple communities, the possible contradiction between their
neighboring nodes may also be large and thus cause the uncertainty.
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Uncertainties in Networks

« Learning an embedding as a distribution rather than a point-vector allows us to
capture uncertainty of the nodes

« The mean vectors reflect the position of the nodes and variance terms should contain the
uncertainty of the nodes.

« Gaussian distribution innately represents the uncertainty property[1].

[1] Luke Vilnis and Andrew McCallum. 2014. Word representations via Gaussian embedding. arXiv preprint arXiv:1412.6623 (2014).



Basic requirements

e Structural Proximities
e Transitivity
e Uncertainty

o The mean vectors should reflect the position of the nodes.

o The variance terms should contain the uncertainty of the nodes.



DVNE for Structure and Uncertainty

Parameter sharing

decoder -; decoder -;
g Z
sample €; sample g,
Ranking i i
Loss “iL'_] oim I‘kL__] °km]
V4N AY V4
encode encoder 'y
Node j // "\ Node k

Figure 1: The framework of DVNE.

Dingyuan Zhu, et al. Deep Variational Network Embedding in Wasserstein Space. KDD, 2018.



Section Summary

Compared with network structures, network properties have large
space to explore in network embedding.

Transitivity is important for network inference.

Uncertainty provides evidence in making network inference.

Many other property issues:

o The right embedding space: Euclidean space?
o Power-law distribution

(@)



Outline

- Structure-preserved network embedding

- Property-preserved network embedding

- Dynamic network embedding

- Robustness, Explainability and Applicability

- Network embedding for biomedical applications



Dynamic Networks

e Networks are dynamic in nature
o New (old) nodes are added (deleted)
= New users, products, etc.

o The edges between nodes evolve over time
Users add or delete friends in social networks, or neurons establish new
connections in brain networks.

e How to efficiently incorporate the dynamic changes when
networks evolve?
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Key problems in dynamic network embedding

e | : Out-of-sample nodes
e ll:Incremental edges
e lll: Aggregated error

e |V: Scalable optimization



Challenge: High-order Proximity

o High-order proximity

..

o Critical structural property of networks T @)
o Measure indirect relationship between

nodes
o Capture the structure of networks with %~ a7

different scales and sparsity \ .. “Classmates

SOCIety

Network Embedding V.S. Traditional Graph Embedding



Challenge: High-order Proximity

‘‘‘‘‘‘‘‘‘

..
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R Y 2. U N

. ., .,
.....

: Out-of-sample nodes

: Incremental edges

: Aggregated error

: Scalable optimization

C lassmates .

Preserve High-order Proximities

 Preserve High-order Proximities
<~
Local Change leads to Global Updating




Key problems in dynamic network embedding

e | : Out-of-sample nodes
e Il:Incremental edges
e lll: Aggregated error

e |V: Scalable optimization



Problem

e To infer embeddings for out-of-sample nodes.

G=(V,E) G'=(V',E)
4 N 4 PR )

() ;
() .
@ -
)—@

J \

\_ - I*‘ - ’)
Out-of-Sample Nodes
In-Sample Nodes

G=(V, E) evolves into G’=(V’, E’), where V' =V U V*.

n old nodes: V = {v1,...,vn}, m new nodes: V* = {vn+1,...,vn+m}
Network embedding: f: V-Rd

We know f(v) for old nodes, want to infer f(v) for new nodes.



Challenges

e Preserve network structures
o e.g. high-order proximity

o need to incorporate prior knowledge on networks

e Share similar characteristics with in-sample embeddings
o e.g. magnitude, mean, variance

o  requires a model with great expressive power to fit the data well

e Low computational cost

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.



Specific vs. General

o Specific
o A new NE algorithm capable of handling OOS nodes.

o General
o A solution that helps an arbitrary NE algorithm handle OOS nodes.

« We propose a general solution.

o But it can be easily integrated into an existing NE algorithm (e.g.
DeepWalk) to derive a specific algorithm (see the paper).

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.



DepthLGP

e Nonparametric probabilistic modeling + Deep Learning

Probabilistic Inference
L/G\h ~ gPhLap

P GRS IDS

N 7

. ‘i i

Out-of—Sa{nple Nodes

In-Sample Nodes lH oS3
Deep Neural Network

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.




DepthLGP

e Design a kernel for the kth (k=1,...,s) dimension of A(-)

\A _/
[I HneL(Ag )|+ CA’L(AATA/&‘)‘ ’

Z
|

:J>>
ol
[|>

= diag(ay)A'diag(a,).

a2 T a T

7 T Un4+m

X

The matrix inversion can be bypassed without approximation.

2all, indicates how much attention we pay to a node. It is learned for an in-sample node, but fixed to
one for an OOS node, as we are always interested in OOS nodes.



Task I: Classification

Baselines This Work Upper Bound
Metric Embedding Network LocalAvg MRG LabelProp hLGP DepthLGP  (rerunning)

Macro-F1(%) LINE DBLP 37.89 42.15 40.83 47.33 48.25 (49.07)
PPI 10.52 10.02 12.42 13.42 13.72 (13.91)
BlogCatalog 13.25 11.30 17.07 17.41 18.03 (18.90)
GraRep DBLP 50.61 55.79 55.02 57.43 58.67 (62.92)
PPI 13.65 13.75 12.38 14.80 14.84 (15.33)
BlogCatalog 14.76 14.80 14.71 15.94 18.45 (20.15)
node2vec DBLP 53.83 59.34 59.25 60.89 62.63 (64.87)
PPI 15.05 13.43 13.78 15.85 16.54 (16.81)
BlogCatalog 15.10 14.04 19.16 19.77 20.32 (20.82)
Micro-F1(%) LINE DBLP 49.58 50.49 50.88 54.01 54.94 (55.84)
PPI 18.10 15.71 18.81 20.71 21.42 (21.43)
BlogCatalog 27.40 23.21 30.79 31.36 31.90 (32.20)
GraRep DBLP 60.17 60.62 60.48 61.44 62.29 (65.44)
PPI 20.23 20.35 20.23 20.79 21.44 (21.88)
BlogCatalog 36.44 30.79 33.90 37.57 38.14 (38.37)
node2vec DBLP 60.54 62.29 62.52 62.83 64.56 (65.63)
PPI 19.70 18.25 18.25 22.63 23.11 (23.41)

BlogCatalog 34.83 25.82 36.94 37.96 39.64 (40.34)




Key problems in dynamic network embedding

e | : Out-of-sample nodes
e Il: Incremental edges
e lll: Aggregated error

e |V: Scalable optimization



The Static Model

 We aim to preserve high-order proximity in the embedding
matrix with the following objective function :

min [|[S — UU""||%
o where S denotes the high-order proximity matrix of the network

o Uand U’ is the results of matrix decomposition of S.

o For undirected networks, U and U’ are highly correlated.

o Without loss of generality, we choose U as the embedding matrix.

Dingyuan Zhu, et al. High-order Proximity Preserved Embedding For Dynamic Networks. IEEE TKDE, 2018.



GSVD

e We choose Katz Index as S because it is one of the most
widely used measures of high-order proximity.

skatz — Vv, 7ML,
M, = (I — 5A)
M, = A
o where B is a decay parameter, | is the identity matrix and A is the
adjacency matrix

» According to HOPE, the original objective function can be
solved by the generalized SVD (GSVD) method



Generalized Eigen Perturbation

o We propose generalized eigen perturbation to fulfill the
task.

o The goal of generalized eigen perturbation is to update X to X(+1)

o Specifically, given the change of adjacency matrix AA
between two consecutive time steps, the change of Ma
and Mb can be represented as:

AM, = —BAA, and AM, = SAA

Dingyuan Zhu, et al. High-order Proximity Preserved Embedding For Dynamic Networks. IEEE TKDE, 2018.



Key problems in dynamic network embedding

e | : Out-of-sample nodes
e Il:Incremental edges
e lll: Aggregated error

e |V: Scalable optimization



Problem: Error Accumulation

Eigen perturbation is at the cost of inducing approximation

Ao

Problem: error accumulation is inevitable

SVD

Q

Q

Uo

Uy

20 Vo

U Update
21 Vy

U Update
XY Vi

Error
Accumulation!



Solution: SVD Restarts

Solution: restart SVD occasionally

AO S VD UO ZO VO

A1 U1 21’ V1
SVD Y V,
U t t
Restart Ay — t
Update
When? U
A1 U’ | [ 2t Viet

What are the appropriate time points?
Too early restarts: waste of computation resources
Too late restarts: serious error accumulation



Naive Solution

Naive solution: fixed time interval or fixed number of changes
Difficulty: error accumulation is not uniform

M

L

2468 2468 2468 2468 24638

Count of Restart
Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.
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Existing Method
Existing method: monitor loss (Chen and Candan, KDD 2014)
Loss in SVD:
J =S —UzVT|iz
S: target matrix, [U, Z, V]: results of SVD
Problem: loss includes approximation error and intrinsic loss in SVD
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Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



Framework: Monitor Margin

Observation: the margin between the current loss and intrinsic loss
in SVD is the actual accumulated error

Current loss: J = ||S — UXVT||%

2
|F , k: dimensionality

Intrinsic loss: £(S,k) = min [|S - Uzt

5.5
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5 |—Intrinsic Loss in SVD
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Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



Solution: Lazy Restarts
Lazy restarts: restart only when the margin exceeds the threshold
Problem: intrinsic loss is hard to compute
Direct calculation has the same time complexity as SVD
Relaxation: an upper bound on margin
A lower bound on intrinsic loss L(S,k)
J(t) — L(St, k) - J(t) — B(t).

L(S¢, k) - B(t)
J(t): current loss; L(S_t,k): intrinsic loss; B(t): bound of intrinsic loss

L(Si, k) > B(t) =

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



A Lower Bound of SVD Intrinsic Loss

|ldea: use matrix perturbation

Theorem 1 (A Lower Bound of SVD Intrinsic Loss). If' S
and AS are symmetric matrices, then:

L(S+ AS, k) > L(S, k) + Atr*(S + AS, S) ZAI
where \1 > X\o... > A\i are the top-k eigenvalues of Vg2 =
S-AS+AS-S+ AS-AS, and

Atr*(S+ AS,S) =tr ((S+ AS) - (S+ AS)) —tr(S - S).

Intuition: treat changes as a perturbation to the original network

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



Time Complexity Analysis

Theorem 2. The time complexity of calculating B(t) in Eqn
(13)is O(Mg + Mk + Npk?), where Mg is the number of
the non-zero elements in AS, and Ny,, M, are the number
of the non-zero rows and elements in V g2 respectively.

e If every node has a equal probability of adding new edges,
we have: My ~ 2d,,,Ms, where d,,, is the average
degree of the network .

e For Barabasi Albert model (Barabasi and Albert 1999), a
typical example of preferential attachment networks, we
have: My, ~ 15 [log(dnar) + 7] Ms, where d,y,q. is the
maximum degree of the network and v ~ 0.58 is a con-
stant.

Conclusion: the complexity is only linear to the local dynamic changes

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



Experimental Results: Approximation Error

Fixing number of restarts

avg(r) max(r)
TIMERS | LWI2 | Heu-FL | Heu-FT | TIMERS | LWI2 | Heu-FL | Heu-FT
FACEBOOK | 0.005 | 0.020 | 0.009 0.011 0.014 | 0.038 | 0.025 0.023

Dataset

MATH 0.037 0.057 0.044 0.051 0.085 0.226 0.117 0.179
WIKI 0.053 0.086 | 0.071 0.281 0.139 0.332 | 0.240 0.825
DBLP 0.042 | 0.110 | 0.053 0.064 0.121 0.386 | 0.198 0.238
INTERNET 0.152 0.218 0.196 0.961 0.385 0.806 | 0.647 1.897
Fixing maximum error \
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Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



Experimental Results: Analysis

Syntactic networks: simulate drastic changes in the network structure
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Key problems in dynamic network embedding

e | : Out-of-sample nodes
e Il:Incremental edges
e lll: Aggregated error

e |V: Scalable optimization



Highly-dynamic & Recency-sensitive Data

e News recommendation applications: a bipartite graph
e \WeChat news recommendation network is highly dynamic

o 81 articles and 1400 reading records per second
e The network is also recency-sensitive

o >73% articles died less than 6 hours while no one read again
o  Obvious exponential decay for article duration length.
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Xumin Chen, et al. Scalable Optimization for Embedding Highly-Dynamic and Recency-Sensitive Data. KDD, 2018.(Applied)



Limited resources

We cannot guarantee convergence in-between every two timestamps.
Just do it.

How to do better?
Non-uniform resource allocation.
New edges and nodes worth more resources.



Diffused SGD: Step-wise Weight Diffusion Mechanism

e The Change of a node embedding vector
depends on its distance to the

Changed edge. % 1E-01 y = 0.0148e2 259%
~
e Diffuse across training steps g 1E03 L\; i average
e Forstepr,ifedge (i,j) is ;1E—05 : ' / :
chosen by stochastic method — 1E-07 l _
o 1E-09 . o
For edge (i, j), we have = )
N ]

pi,j(r) « e (i.pij(r —1)): IE-11
for (i,k) € EAk # j, we use
Pik(r) < pi(r = 1) + 1y (i, pij(r = 1)) ;
and for other edges (I,k) e EAl # i,
Pri(r) < prg(r—1);
Xumin Chen, et al. Scalable Optimization for Embedding Highly-Dynamic and Recency-Sensitive Data. KDD, 2018.(Applied)
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Section Summary

| : Out-of-sample nodes

o DepthLGP = Non-parametric GP + DNN

Il : Incremental edges

o DHPE: Generalized Eigen Perturbation

lll: Aggregated error

o TIMERS: A theoretically guaranteed SVD restart strategy

IV: Scalable optimization

o D-SGD: A iteration-wise weighted SGD for highly dynamic data



Outline

- Structure-preserved network embedding

- Property-preserved network embedding

- Dynamic network embedding

- Robustness, Explainability and Applicability

- Network embedding for biomedical applications



Technical challenges in real applications

Robustness Interpretability Applicability

Hot directions in computer vision:

Adversarial Explainable Scalable

before pruning after pruning

pruning  __
synapses

pruning
neurons




Robustness in network embedding

OAdversarial attacks
Osmall perturbations in graph structures and node attributes
Ogreat challenges for applying GCNs to node classification
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Adversarial Attacks on GCNs

OCategories

O Targeted VS Non-targeted
O Targeted: the attacker focus on misclassifying some target nodes
O Non-targeted: the attacker aims to reduce the overall model
performance
O Direct vs Influence
O Direct: the attacker can directly manipulate the edges or features
of the target nodes
O Influence: the attacker can only manipulate other nodes except
the targets

O How to enhance the robustness of GCNs against adversarial
attacks?



Robust Graph Convolutional Networks

O Adversarial attacks in node classification

O Connect nodes from different communities to confuse the
classifier

ODistribution V.S. plain vectors
O Plain vectors cannot adapt to such changes
O Variances can help to absorb the effects of adversarial
changes
O Gaussian distributions -> Hidden representations of nodes



The Framework of RGCN
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Experimental Results

O Node Classification on Clean Datasets

Cora | Citeseer | Pubmed
GCN 81.5 70.9 79.0
GAT 83.0 72.5 79.0
RGCN | 83.1 71.3 79.2

O Against Non-targeted Adversarial Attacks
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Figure 2: Results of different methods when adopting Random Attack as the attack method.
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Interpretability of network embedding

e A real-world graph is typically formed due to many latent factors.

O Existing GNNs/GCNs:
Social O A holistic approach, that takes in
Sircles the whole neighborhood to produce
a single node representation.

O We suggest:
O To disentangle the latent factors.

(By segmenting the heterogeneous parts, and learning
multiple factor-specific representations for a node.)

O Robustness (e.g., not overreact to an irrelevant
factor) & Interpretability.




Disentangled Representation Learning

e Thatis, we aim to learn disentangled node representation,

m A representation that contains independent components, that describes different aspects
(caused by different latent factors) of the observation.

e The topic is well research in the field of computer vision.
m Butlargely unexplored in the literature of GNNSs.

(a) Skin colour

-F I T XN
N 2T 2T

Example: Three dimensions that are related skin color, age/gender, and saturation, respectively.




Method Overview

e We present DisenGCN, the disentangled graph convolutional network.
m DisenConv, a disentangled multichannel convolutional layer (figure below).

m  Each channel convolutes features related with a single latent factor.

[EmE.
Layer
Extract features specific to each factor.  gutput




DisenConv: Multiple Channels

e The DisenConv layer f(-) takes in the neighborhood of a node, and outputs
the node’s convoluted representation.

Yu — f (XU7 {Xv : (U,U) S G})
e It has K channels. The output is concatenated from the outputs of the
channels.

Yu — [C17C27"'7CK]

e Each channel has its own projection matrix for extracting aspect-specific
features. Given a node i, the extracted feature regarding aspect k is:

B (W, x; + by)
lo (Wi + by ||

Z; L



Neighborhood Routing: Hypothesis I

A neighbor is patched to channel k (for further in-channel graph convolution), if the
edge between the neighbor and the center node is caused by factor k.

But the actual causes are unknown. Neighborhood routing is therefore proposed to
infer the latent causes, based on two hypothesis.

The first is analogous to the second-order proximity.

Hypothesis 1. Factor £ is likely to be the reason why node
u connects with a certain subset of its neighbors, if the
subset 1s large and the neighbors in the subset are similar
w.r.t. aspect k, i.e., they form a cluster in the kth subspace.

It inspires us to search for the biggest cluster in each of the K subspaces.



Neighborhood Routing: Hypothesis II

e The second hypothesis is analogous to the first-order proximity.

Hypothesis 2. Factor k is likely to be the reason why node
u and neighbor v are connected, if the two are similar in
terms of aspect k.

e Hypothesis 2 is not robust if either x,, or x,, misses features about aspect k,
and therefore must be combined with Hypothesis 1. But it can provide a fast
guess.



Neighborhood Routing: Hypothesis I + Hypothesis II

e Letp,, be the probability that factor k is the reason why node u reaches
neighbor v, which should satisfies p,,;, = 0 and X;/_, Py’ = 1.

e |Initialization based on Hypotq?sis 1 (for fast converaence):
pv,k X eXp(ZU,kTZu,k)

e lterate for T steps, based mainly on Hypothesis 2:

(t—1)
S0 _ _Zuk F 2uw)e Pog  Zuk e
ko t—1 ? v,
quak + Z’UZ(U,U)EG pq(),k ) Z’U,k:HQ
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Results: Multi-label Classification
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Figure 2. Macro-F1 and Micro-F1 scores on the multi-label classification tasks. Our approach consistently outperforms the best performing
baselines by a large margin, reaching 10% to 20% relative improvement in most cases.

*Results on Cora/Citeseer/Pubmed are only slightly better than GAT. See the paper for explanations.



Results: On Synthetic Graphs

Table 3. Micro-F1 scores on synthetic graphs generated with different numbers of latent factors.

Number of latent factors

Method -4 6 8 10 12 14 16
GCN 78.78 £ 1.52 65.73 £ 1.94 46.55 = 1.55 37.37 £ 1.52 2449 £ 1.03 18.14 £ 1.50 16.43 £ 0.92
GAT 83.77 £2.32 60.89 £ 3.75 45.88 £ 3.79 36.72 £ 3.58 24.77 £ 3.47 20.89 £ 3.57 19.53 £ 3.97

DisenGCN (this work) 93.84 4+ 1.12 74.68 + 1.92 54.57 + 1.79 43.96 + 1.45 28.17 £ 1.22 23.57 + 1.28 21.99 + 1.34

Relative improvement  +12.02% +13.62% +17.23% +17.63% +13.73% +12.83% +12.6%

e Improvement is larger when #factors is relatively large (around 8).
e However, all methods are bad when #factors is extremely large.



Results: Correlations between the Neurons
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Applicability of network embedding

O Link Prediction

O Community Detection
O Node Classification
O Network Distance

O Node Importance

:-° Leading to a large number of hyperparameters |=> [ ]
I * Must be carefully tuned I




AutoML

« Ease the adoption of machine learning and reduce the rellance on
human experts
* e.g., hyperparameter optimization

« Largely unexplored on network data

« Large scale issue: &=
» Complexity of Network Embedding is usually at Ieast O(E)
» E is the number of edges (can be 10 billion)

» Total complexity: O(EL), T is the times searching for optimal
hyperparameter



AutoML for network embedding

« A straightforward way: configuration selection on sampled sub-networks

° 1\Va
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[ : ° P .. ® » ¢ ™ ® ¢
® . ¢ 4

Sampled sub-network Origin massive network

Optimal configuration 6

« Transferability
* 0 +# optimal configuration on origin network
* Heterogeneity
« several highly heterogeneous components => carefully designed sampling

Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, Wenwu Zhu. AutoNRL: Hyperparameter Optimization for Massive Network Representation Learning. KDD, 2019.
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Experiment --- Sampling-Based NE

Micro-F1
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ABSTRACT

Network embedding assigns nodes in a network to low-dimensional representations and effectively preserves the network structure. Recently, a
significant amount of progresses have been made toward this emerging network analysis paradigm. In this survey, we focus on categorizing and then
reviewing the current development on network embedding methods, and point out its future research directions. We first summarize the motivation of
network embedding. We discuss the classical graph embedding algorithms and their relationship with network embedding. Afterwards and primarily,
we provide a comprehensive overview of a large number of network embedding methods in a systematic manner, covering the structure- and property-
preserving network embedding methods, the network embedding methods with side information and the advanced information preserving network
embedding methods. Moreover, several evaluation approaches for network embedding and some useful online resources, including the network data
sets and softwares, are reviewed, too. Finally, we discuss the framework of exploiting these network embedding methods to build an effective system

and point out some potential future directions.

Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. A Survey on Network Embedding. /[EEE TKDE, 2018.



Deep Learning on Graphs: A Survey

Deep Learning on Graphs: A Survey
Ziwei Zhang, Peng Cui and Wenwu Zhu

Abstract—Deep learning has been shown successful in a number of domains, ranging from acoustics, images to natural language
processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs.
Recently, a significant amount of research efforts have been devoted to this area, greatly advancing graph analyzing techniques. In this
survey, we comprehensively review different kinds of deep learning methods applied to graphs. We divide existing methods into three
main categories: semi-supervised methods including Graph Neural Networks and Graph Convolutional Networks, unsupervised
methods including Graph Autoencoders, and recent advancements including Graph Recurrent Neural Networks and Graph
Reinforcement Learning. We then provide a comprehensive overview of these methods in a systematic manner following their history
of developments. We also analyze the differences of these methods and how to composite different architectures. Finally, we briefly

o0 outline their applications and discuss potential future directions.
p—
() Index Terms—Graph Data, Deep Learning, Graph Neural Network, Graph Convolutional Network, Graph Autoencoder.
(@\| +
Q
a
— 1 INTRODUCTION o Scalability and parallelization. In the big-data era, real
— ) ) ) graphs can easily have millions of nodes and edges, such
In 'the' Ia.?t def:ade, deep leam{ng has I?een a “C"OWv" Jjewel m as social networks or e-commerce networks [8]. As a result,
—— artificial intelligence and machine learning [1], showing superior how to design scalable models, preferably with a linear time
O perfomTance In acoustics [.2]’ images [3] and natl}ral language complexity, becomes a key problem. In addition, since nodes
]  Processing [4]. The CXpressive power of deep learning to extract and edges in the graph are interconnected and often need to
wn complex patterns underlying data has been well recognized. On be modeled as a whole, how to conduct parallel computing is
O the other hand, graphs' are ubiquitous in the real world, repre- another critical issue.

Ziwei Zhang, Peng Cui, Wenwu Zhu. Deep Learning on Graphs: A Survey. Arxiv, 2018.



Outline

- Structure-preserved network embedding

- Property-preserved network embedding

- Dynamic network embedding

- Robustness, Explainability and Applicability

- Network embedding for biomedical applications



Network Embedding for Biomedical Applications

Drug repositioning
[ Pharmaceutical ] \ /
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Pharmaceutical data analysis

1 Drug repositioning
Exploring new usage for existing drugs.

o save drug development cost
o increase productivity
Aiming at predicting:
o unknown drug-target interactions

o unknown drug-disease interactions



Pharmaceutical data analysis

o Drug-target interaction prediction

Drugs Target proteins

Drug Proteomic
information, information,
e.g., chemical e.g., protein
similarity similarity
matrix matrix

Matrix factorization based embedding methods, e.g., LE



Pharmaceutical data analysis

o Drug-target interaction prediction (Zong et al. 2017)

Drug-drug
similarity

Drug
Target (protein) Network a Similarity New drug-
embedding |$ based |$ target

Drug-drug interaction (DeepWaIk) inference interaction

Target-target interaction

— Drug-target interaction Target-
target
similarity

Heterogenous network

1. Zong N, Kim H, Ngo V, et al. Deep mining heterogeneous networks of biomedical linked data to predict novel drug— target associations.
Bioinformatics 2017;33:2337—44.



Pharmaceutical data analysis

o Drug-disease interaction prediction (Dai et al. 2015)

Drug-gene interaction

u 91
1 9> .
Y 75 Genomic
Gene-gene network 2 94 Ifl> representation
U3 9s of drugs
uy e
. " 97
Gene embeddings
; 91: [P Pros- . i) Prediction
Embedding 92: [P oo )" (drug-disease
(eigenvalue matrix
decomposition) : . a factorization)
g7:[pno oo P Disease-gene interaction
91
5 4 Genomic
S 94 representation
5 95 of disease
e
- 97

1. Dai W, Liu X, Gao Y, et al. Matrix factorization-based predic- tion of novel drug indications by integrating genomic space. Comput Math

Methods Med 2015;2015:275045.



Pharmaceutical data analysis

o Drug-disease interaction prediction (Wang et al. 2017)

Drug Disease

|:> Positive
proximity

NLP Treatment
27 million Drug- a & Network Predicting:
PubMed Ifl>  disease (pefsrgsgﬂgg”ﬁrst_ |:> treatment &
articles interactions $ a order proximity) inducement
Drug Disease
|:> Negative
proximity
Inducement

1. Wang P, Hao T, Yan J, et al. Large-scale extraction of drug— disease pairs from the medical literature. J Assoc Inf Sci Technol
2017;68:2649-61.



Pharmaceutical data analysis
1 Adverse drug reaction analysis

An adverse drug reaction (ADR) is defined as any undesirable effect from the

medical use of drugs beyond its anticipated therapeutic effects that occurs at a
usual dosage.

The ADR study is implemented before a drug is launched on clinical application.

o Adverse drug reaction (ADR) prediction

o Drug-drug interaction (DDI) prediction



Pharmaceutical data analysis

o Adverse drug reaction (ADR) prediction (Stanovsky et al. 2017)

|ldentify ADR from social media posts:

Output labels of each word, B, |, and O:
(B) Beginning of an ADR span; (l), Inside an ADR span; (O), Out-side of the span of an ADR

Y1 y2 ys ya ys
BiLSTM-RNN
N N N
DBpedia 0\ 0\
KG
embedding

If a word is a entity in DBpedia, Aspirin made me feel dizzy

then override its features with

the DBpedia embeddings.

Pre-trained word embedding

1. Stanovsky G, Gruhl D, Mendes P. Recognizing mentions of adverse drug reaction in social media using knowledge- infused recurrent
models. In: Proceedings of the 15th Confer- ence of the European Chapter of the Association for Computa- tional Linguistics, 2017, pp.

142-51. Valencia, Spain.



Pharmaceutical data analysis

o Drug-drug interaction (DDI) prediction (Abdelaziz et al. 2017)

Feature vector of

Network drug-drug pair
embedding —
Global
Drug knowledge |:> similarity
graph

based features

Construct

Ifl> Ifl> Downstream
classifier

Drug associated

information (e.g., |:> Local similarity
chemical based features
structure)

1. Abdelaziz |, Fokoue A, Hassanzadeh O, et al. Large-scale structural and textual similarity-based mining of knowl- edge graph to predict
drug—drug interactions. Web Semant 2017;44:104-17.



Pharmaceutical data analysis

o Drug-drug interaction (DDI) prediction (Wang et al. 2017)

N N
Heterogeneous medical Existing drug-drug
knowledge graph interactions
— J J
- - \
Basic triple: (h,1,t) Rich DDl triple: (u,l,v)
h, t: entities (drug, protein, u, v: drug entities
pathway, phenotype) l: text label of DDI
r: relation y )
Basic triple encoder: Rich DDI triple encoder:
Zpte(h, 1, t) = by — [[AM, + 1 — tM, || 11/10 Zdte(u Lv) = by — [[uM; +1—vM;| 111
Joint learning: ﬁbte + L ¥ Lra +7C(X) Ifl> [ New DDls
Text label encoder Regularization term

1. Wang M, Chen Y, Qian B, et al. Predicting rich drug—drug interactions via biomedical knowledge graphs and text jointly embedding,
2017, arXiv preprint arXiv:171208875.



Multi-omics data analysis

1 Genomics data analysis
o Gene function prediction (Wang et al. 2015)

Molecular network Gene vector space

Gene ————

» Network embedding '

(random walk ‘ Project y'=wx
based)
Gene ontology (GO)
co? GO label vector space
GOs e
GO label GO4 ‘
GO1

1. Wang S, Cho H, Zhai C, et al. Exploiting ontology graph for predicting sparsely annotated gene function. Bioinformatics 2015;31:i357—64



Multi-omics data analysis

o Identification of Pathways Associated with Chemosensitivity (Wang et al. 2017)

Gene C .
Gene D Pathway 2 Ranking of Pathways
Gene B Score pathway
Nitvgi;ﬂ-k based on its cosine EI Pathway 2
embedding Pathway 3 distance to RCGs
‘ Pathway 1 — Izl Pathway 1
Gene A E Pathway 3

‘ ‘ ' Response Correlated
Genes (RCGs)

1. Wang S, Huang E, Cairns J, et al. Identification of pathways associated with chemosensitivity through net- work embedding. 2017,
bioRxiv preprint bioRxiv: 168450 doi:10.1101/168450



Multi-omics data analysis

o Cell and gene representation (Li et al. 2017)
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1. Wang S, Huang E, Cairns J, et al. Identification of pathways associated with chemosensitivity through net- work embedding. 2017,
bioRxiv preprint bioRxiv: 168450 doi:10.1101/168450



Multi-omics data analysis
1 Proteomics data analysis

o Protein-protein interaction (PPI) prediction (Cannistraci et al. 2013)

Experimental identification of PPIs is time-consuming.
Computational method was proposed to predict candidate PPIls based on existing interactions

Protein-protein

network Euclidean
Network distance between
embedding protein pair

Ranking and
‘ ‘ predicting candidate
protein-protein
interactions

Shortest path
length between
protein pair

1. Cannistraci CV, Alanis-Lobato G, Ravasi T. Minimum curvi- linearity to enhance topological prediction of protein interactions by network
embedding. Bioinformatics 2013;29: i199-209.



o Protein function prediction (Wang et al. 2017)

Human

Movuse

Yeast

Heterogenous protein-protein network

Multi-omics data analysis

Construct protein-protein network;

Learn low-dimensional representations for
proteins;

Calculate an intra-species affinity score and an
inter-species affinity score by transferring Gene
annotations

Rank the score and pick the function(s) with the
highest score(s) for queried protein (s)



Multi-omics data analysis

1 Transcriptomics data analysis
o MicroRNA-disease association prediction (Li et al. 2017)

- microRNAs (miRNAs) are connected with several complex human diseases;
- ldentifying human disease-related miRNAs will be useful in uncovering novel prognostic
markers for cancer.

@ miRNA 1

Disease 2 Network Similarity » Predict unknown
associations

embedding learning

Disease 3 miRNA 2
known associations

1. Li G, Luo J, Xiao Q, et al. Predicting microRNA-disease associations using network topological similarity based on DeepWalk. IEEE
Access 2017;5:24032-9.



Medical data analysis
1 Medical knowledge graph embedding

o Safe medication recommendation (Wang et al. 2017) — predicting patient-medicine
association
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1. Wang M, Liu M, Liu J, et al. Safe medicine recommenda- tion via medical knowledge graph embedding, 2017, arXiv preprint
arXiv:171005980



Medical data analysis

o Representation learning on medical forum data (Zhao et al. 2017)

Learning low-dimensional representations of diseases and symptoms.

Disease
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Co-occurrence Network
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1. Zhao S, Jiang M, Yuan Q, et al. ContextCare: incorporating contextual information networks to representation learn- ing on medical
forum data. In: Proceedings of the 26th Inter- national Joint Conference on Artificial Intelligence, 2017, pp. 3497-503. AAAI Press,
Melbourne, Australia.



o Healthcare representation learning (Choi et al. 2017)

Medical data analysis
1 EHR embedding

- EHR representation with hierarchical information inherent to medical ontologies;
- The model represents a medical concept as a combination of its ancestors in the ontology via an

attention mechanism.
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embedding:
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Vi,Va,...,v; = tanh(G[xq, X2, ...,X¢]),

hi,hy, ..., hy = RNN(vy,vo,...,vs,0p),

Vi = Xs+1 = Softmax(Wh; + b),

1. Choi E, Bahadori MT, Song L, et al. GRAM: graph-based attention model for healthcare representation learning. In: Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 787-95. ACM, Halifax, Nova Scotia,

Canada.



Network Embedding for Biomedical Applications

a1 Challenges

o Data quality. Networks constructed from the biomed- ical data are usually noisy
and incomplete. For example, the PPI data produced by high-throughput
techniques, suffer from high false negative rates up to 70% and high false positive
rates up to 64%.

o Local and global. Network embedding and its downstream tasks rely on the type
of structural property to preserve. Designing embedding method by properly
considering local and global structure properties require the development of novel
solutions.

o Network evolution. Networks are always not static, especially in the biomedical
domain. Yet most existing embedding models focus on static network.

o Domain complexity. Network structure is highly associated with domain
knowledge.



Network Embedding for Biomedical Applications

a1 Opportunities

©)

Local and global trade-off embedding.

Dynamic network embedding.

Text associated embedding. Medical knowledge bases always contain rich text
information such as descriptions of entities and relations, which would have high
potential to address network incompleteness and improve under- standing of
topological properties.

Domain-knowledge-associated embedding. Incorporating external domain
knowledge into network embedding.



Summary and Conclusion

Structure-preserved network embedding

Guarantee information equivalence
Property-preserved network embedding

Enabling network inference in embedding space
Dynamic network embedding

Incorporating dynamic changes
Robustness, Explainability and Applicability

Promote network embedding in real applications
Network embedding for biomedical applications
Prove the effectiveness of NE in real applications



