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G = ( V, E )

Iterative &
Combinatorial Complexity

Coupling Parallelizability

Links

Computability
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G = ( V, E )

Links Topology

Inapplicability of 
ML methods

Network 
Data

Feature 
Extraction

Pattern 
Discovery

Network 
Applications

Pipeline for network analysis

Learnability
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G = ( V, E ) G = ( V )
Vector Space

generate

embed

• Easy to parallel

• Can apply classical ML methods

������������
��
�	
����� ����



in Vector Space

Network Inference
• Node importance

• Community detection

• Network distance

• Link prediction

• Node classification

• Network evolution

• …
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Topological 
Information

Semantic 
Information

Nodes Attributes
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Topology Vectorization is the key problem.



Goal  Support network inference in vector space

Reflect network 
structure

Maintain network 
properties

B

A C

Transitivity
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• Structure-preserved network embedding

• Property-preserved network embedding

• Dynamic network embedding

• Robustness, Explainability and Applicability

• Network embedding for biomedical applications
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Nodes & Links

Community Structures

Pair-wise Proximity

Hyper Edges

Global Structure
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Matrix Factorization

Reconstruct all the links? May cause overfitting.
The network inference ability is seriously limited.

Adjacency Matrix Embedding Matrix

Reconstruct the original network

�
������ �	��



Nodes & Links

Community Structures

Pair-wise Proximity

Hyper Edges

Global Structure
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• Capturing the underlying structure of networks

• Advantages:

• Solve the sparsity problem of network connections

• Measure indirect relationship between nodes
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• Exploit truncated random walk to define neighborhood of a node.

B. Perozzi et al. Deepwalk: Online learning of social representations. KDD 2014.

Random Walks on Graph

• !"# − !"% − !&" − !& − !'(…
• !% − !) − !') − !# − !'' …
• !&' − !&& − !"' − !&& − !'%



Jian Tang et al. LINE: Large-scale Information Network Embedding. WWW 2015.

LINE with Second-order Proximity:
neighborhood structures

LINE with First-order Proximity:
local pairwise
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Unsupervised Autoencoder
(preserve second-order proximity)

Unsupervised Autoencoder
(preserve second-order proximity)
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Daixin Wang et al. Structural Deep Network Embedding. KDD, 2016.
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Shaosheng Cao et al. GraRep: Learning Graph Representations with Global Structural Information. CIKM 2015.

capturing
different
k-step
information

maintaining
different
k-step
information
separately

1-step 2-step 3-step 4-step

Do not distinguish 1-step and 2-step



• Different networks/tasks require different high-order proximities
• E.g., multi-scale classification (Bryan Perozzi, et al, 2017)

• E.g., networks with different scales and sparsity

• Proximities of different orders can also be arbitrarily weighted
• E.g., equal weights, exponentially decayed weights (Katz) 
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• Existing methods can only preserve one fixed high-order proximity
• Different high-order proximities are calculated separately

• -> How to preserve arbitrary-order proximity while guaranteeing accuracy and 
efficiency?

……
Proximity1

Proximity2 Proximity3 Proximity4

Embedding1 Embedding2 Embedding3 Embedding4

Time consuming!
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• High-order proximity: a polynomial function of the adjacency matrix

! = # $ = %&$& + %($( + ⋯+ %*$*
• +: order; %&…%*: weights, assuming to be non-negative

• $: could be replaced by other variations (such as the Laplacian matrix)

• Objective function: matrix factorization
min0∗,3∗ ! − 5

∗6∗7 8
(

• 5∗, 6∗ ∈ ℝ;×=: left/right embedding vectors

• d: dimensionality of the space

• Optimal solution: Singular Value Decomposition (SVD)
• 5, Σ, 6 : top-d SVD results

5∗ = 5 Σ, 6∗ = 6 Σ

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018. 
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• The equivalence between top-d SVD and eigen-decomposition

• !, Σ, $ : top-d SVD . Λ, X : top-d eigen-decomposition

• How to solve Λ, X for ( = * + = ,-+- + ,/+/ + ⋯+ ,1+1

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018. Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018. 
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• Eigen-decomposition reweighting

• Insights: high-order proximity is simply re-weighting dimensions!

! "ΛEigen-decomposition

$

Polynomial ℱ · Polynomial ℱ ·

"ℱ ΛEigen-decomposition

Time Consuming!

Time Consuming!

Efficient!

Efficient!

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018. 
'∗ = ' Σ, ,∗ = , Σ

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018. 



• Re-ordering of dimensions
• As Λ is not necessarily positive, the top-d ℱ(Λ) may not correspond to the 

top-d Λ
• How many eigen pairs of A do we need for top-d eigen pairs of " = ℱ(%)?

• How large is ' :   ' ≈ 2*
• Proven for random (Erdos-Renyi), random power-law networks
• Verified on experiments

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018. 
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Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018. 



• Shifting across different orders/weights:

• Preserving arbitrary-order proximity

• Low marginal cost

• Accurate and efficient
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Eigen-decomposition !Λ

……

Embedding1

Embedding2

Embedding3

Efficient!

Shifting

Embedding4

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018. Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018. 



• Link Prediction

+200%+100%
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Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018. 



Nodes & Links

Community Structures

Pair-wise Proximity

Hyper Edges

Global Structure
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How to reflect the role or importance of a vertex in 
embedding space?

• Vertexes in different parts of the network 
may have similar roles(global position)

• Example�
• Managers in the social network of a 

company
• Outliers in a network in the task of 

anomaly detection

Social network with different position
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• They can only preserve local proximity(Structural equivalence), can not reflect 
the global position

• Embeddings of node 5,6 in left network will be similar but embeddings of node 1, 2 in 
right network will not be similar.

1 2

6

3

4

5
7

8
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3

2

4
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• Structural equivalence !
• "($) = "(')
• Direct way

• Common neighbors

• Regular equivalence (
• ( ) ) ∈ " $ = ( + + ∈ " '
• Recursive way

• Similar global position

Regular equivalence is largely ignored in network embedding

Two nodes are regularly equivalent if their network neighbors are themselves 

similar (i.e. regularly equivalent).



● Basis: two regularly equivalent nodes should have similar embeddings

1. Explicitly calculate the regular equivalence of all vertex pairs

■ infeasible for large-scale networks due to the high complexity of 
calculating regular equivalence

2. Replace regular equivalence into simpler graph theoretic metrics
■ centrality measures

■ one centrality can only capture a specific aspect of network role

■ some centrality measures also bear high computational complexity

����� 	����	�


Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.
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• The definition of regular equivalence is recursive

• Aggregating neighbors’ information in a recursive way

• How to design the aggregating function
• Variable length of neighbors

• Highly nonlinear

• à Layer-normalized LSTM

Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.
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LSTM LSTM LSTM

LN LN LN

ℎ&X'
reconstruct

MLP ('

(a) (b) (c) (d)

(a) Sampling neighborhoods
(b) Sorting neighborhoods by their degree
(c) Aggregate neighbors
(d) A Weakly guided regularizer
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Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.
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Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.
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The MSE value of predicting centralities on Jazz dataset (∗10−2)

The MSE value of predicting centralities on BlogCatalog dataset (∗10−2)
Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.
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Europe air-traffic American air-traffic

Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.
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Nodes & Links

Node Neighborhood

Community Structures

Pair-wise Proximity

Hyper Edges

Global Structure

Network 
Characteristics

Application 
Characteristics
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• Structure-preserved network embedding

• Property-preserved network embedding

• Dynamic network embedding

• Robustness, Explainability and Applicability

• Network embedding for biomedical applications
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Heterogeneity
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Transitivity Uncertainty
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The Transitivity Phenomenon

B

A C

Network Embedding Space

! ", $ + ! $, & > !(", &)Triangle Inequality:

A close to B, B close to C,  → A relatively close to C 

However, real network data is complex…
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The Co-existence of Transitivity and Non-transitivity 

Collegue

Social network

Word network
Apple

Cellphone Banana

A
dog
lawn

B
cat
lawn

C
cat
floor

Classmate

Image network

How to incorporate non-transitivity in embedding space?



B

A C
Forward Transitive

Backward Transitive

Directed Network

Forward

Backward

A→B, B → C => A → C, but not C →A

Distance metric in embedding space is symmetric.
How to incorporate Asymmetric Transitivity?

Tencent Microblog Twitter
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The source of non-transitivity:

Each node has multiple similarity components

Object 
SC

Scene 
SC

A
dog
lawn

B
cat

lawn
C

cat
floor

B1
cat

A1
dog

C1
cat

A2
lawn

C2
floor

B2
lawn

Non-transitive Transitive Transitive

Non-transitive Embedding: represent non-transitive data
with multiple latent similarity components

M. Ou, et al. Non-transitive Hashing with Latent Similarity Components. KDD, 2015.
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All existing methods fail..

A

B

C

A

B

C

Source Target
A

B

C

“Asymmetric” fail

“Transitivity” fail

Single Vector

Double Vectors



• The formation and evolution of real-world networks are full of uncertainties
• E.g., for the nodes with low degree, they contain less information and thus their 

representations bear more uncertainties than others.

• E.g., for the nodes across multiple communities, the possible contradiction between their 
neighboring nodes may also be large and thus cause the uncertainty.
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• Learning an embedding as a distribution rather than a point-vector allows us to 
capture uncertainty of the nodes

• The mean vectors reflect the position of the nodes and variance terms should contain the 
uncertainty of the nodes.

• Gaussian distribution innately represents the uncertainty property[1].

[1] Luke Vilnis and Andrew McCallum. 2014. Word representations via Gaussian embedding. arXiv preprint arXiv:1412.6623 (2014).
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● Structural Proximities

● Transitivity

● Uncertainty
○ The mean vectors should reflect the position of the nodes. 

○ The variance terms should contain the uncertainty of the nodes.

� ����
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Dingyuan Zhu, et al. Deep Variational Network Embedding in Wasserstein Space. KDD, 2018.
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● Compared with network structures,  network properties have large 

space to explore in network embedding.

● Transitivity is important for network inference.

● Uncertainty provides evidence in making network inference.

● Many other property issues:
○ The right embedding space: Euclidean space?
○ Power-law distribution
○ …
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• Structure-preserved network embedding

• Property-preserved network embedding

• Dynamic network embedding

• Robustness, Explainability and Applicability

• Network embedding for biomedical applications



● Networks are dynamic in nature
○ New (old) nodes are added (deleted)

■ New users, products, etc.
○ The edges between nodes evolve over time

■ Users add or delete friends in social networks, or neurons establish new 
connections in brain networks.

● How to efficiently incorporate the dynamic changes when 
networks evolve?
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�	��� ������



● I  : Out-of-sample nodes

● II : Incremental edges

● III: Aggregated error

● IV: Scalable optimization

�������������	��� �	�������
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● High-order proximity
○ Critical structural property of networks

○ Measure indirect relationship between 
nodes

○ Capture the structure of networks with 
different scales and sparsity

Network Embedding V.S. Traditional Graph Embedding

���	�
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I : Out-of-sample nodes

II : Incremental edges 
III: Aggregated error

IV: Scalable optimization

Preserve High-order Proximities

Local Change leads to Global Updating



● I  : Out-of-sample nodes

● II : Incremental edges 

● III: Aggregated error

● IV: Scalable optimization
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● To infer embeddings for out-of-sample nodes.

• G=(V, E) evolves into G’=(V’, E’),  where V’ = V ∪ V*.
• n old nodes: V = {v1,…,vn},  m new nodes: V* = {vn+1,…,vn+m}
• Network embedding: f: V→Rd
• We know f(v) for old nodes, want to infer f(v) for new nodes.
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● Preserve network structures
○ e.g. high-order proximity

○ need to incorporate prior knowledge on networks

● Share similar characteristics with in-sample embeddings
○ e.g. magnitude, mean, variance

○ requires a model with great expressive power to fit the data well

● Low computational cost

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.
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● Specific 
○ A new NE algorithm capable of handling OOS nodes.

● General
○ A solution that helps an arbitrary NE algorithm handle OOS nodes.

● We propose a general solution.
○ But it can be easily integrated into an existing NE algorithm (e.g. 

DeepWalk) to derive a specific algorithm (see the paper).

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.
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● Nonparametric probabilistic modeling + Deep Learning

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.



● Design a kernel for the kth (k=1,…,s) dimension of h(!)

1The matrix inversion can be bypassed without approximation.
2a(k)

v indicates how much attention we pay to a node. It is learned for an in-sample node, but fixed to 
one for an OOS node, as we are always interested in OOS nodes.

First-order Proximity

Node Weights
(to prune uninformative nodes)

Second-order Proximity

��������
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Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.



● I  : Out-of-sample nodes

● II : Incremental edges

● III: Aggregated error

● IV: Scalable optimization
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● We aim to preserve high-order proximity in the embedding 
matrix with the following objective function�

○ where S denotes the high-order proximity matrix of the network

○ U and U’  is the results of  matrix decomposition of S.

● For undirected networks, U and U’ are highly correlated.

○ Without loss of generality, we choose U as the embedding matrix.
Dingyuan Zhu, et al. High-order Proximity Preserved Embedding For Dynamic Networks. IEEE TKDE, 2018.



����

● We choose Katz Index as S because it is one of the most 
widely used measures of high-order proximity. 

○ where β is a decay parameter, I is the identity matrix and A is the 
adjacency matrix

● According to HOPE, the original objective function can be 
solved by the generalized SVD (GSVD) method
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● We propose generalized eigen perturbation to fulfill the 
task.

○ The goal of generalized eigen perturbation is to update X(t) to X(t+1)

● Specifically, given the change of adjacency matrix △A 
between two consecutive time steps, the change of Ma 
and Mb can be represented as:

Dingyuan Zhu, et al. High-order Proximity Preserved Embedding For Dynamic Networks. IEEE TKDE, 2018.



● I  : Out-of-sample nodes

● II : Incremental edges 

● III: Aggregated error

● IV: Scalable optimization
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A0 U0 V0∑0
!"#

A1 U1’ V1’∑1’

At Ut’ Vt’∑t’≈

…
⇒

&'()*+

⇒
&'()*+

≈

• Problem: error accumulation is inevitable

Error 
Accumulation!

�����	��������� ��������
�
• Eigen perturbation is at the cost of inducing approximation



A0 U0 V0∑0!"#

U1’ V1’∑1’

Ut Vt∑t

…
⇒

%&'()*

⇒
%&'()*

• What are the appropriate time points?
• Too early restarts: waste of computation resources
• Too late restarts: serious error accumulation

A1

At

At+1 Ut+1’ Vt+1’∑t+1’

!"#
Restart

When?

��
��	������ ��������
• Solution: restart SVD occasionally



• Naïve solution: fixed time interval or fixed number of changes
• Difficulty: error accumulation is not uniform

������ 	��
�	�

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



• Existing method: monitor loss (Chen and Candan, KDD 2014)

• Loss in SVD:

! = # − %Σ'( )*

#: target matrix, %, Σ, ' : results of SVD

• Problem: loss includes approximation error and intrinsic loss in SVD

�����	�� ���
�

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



• Observation: the margin between the current loss and intrinsic loss
in SVD is the actual accumulated error

• Current loss: ! = # − %Σ'( )*

• Intrinsic loss: ℒ #, - = min1∗,3∗,4∗ # − %
∗Σ∗'∗( )

* , -: 6789:;7<:=>7?@

 �
���	��������������

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



• Lazy restarts: restart only when the margin exceeds the threshold

• Problem: intrinsic loss is hard to compute
• Direct calculation has the same time complexity as SVD

• Relaxation: an upper bound on margin
• A lower bound on intrinsic loss ℒ(",#)

$(%): current loss; ℒ("_%,#): intrinsic loss; &(%): bound of intrinsic loss

��	����
�� ����������

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



• Idea: use matrix perturbation

• Intuition: treat changes as a perturbation to the original network

�������� ���
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Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.
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Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



• Fixing number of restarts

• Fixing maximum error

-50%

27%~42% Improvement

�����
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Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



• Syntactic networks: simulate drastic changes in the network structure

• Robust to sudden changes

• Linear scalability

�����
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● I  : Out-of-sample nodes

● II : Incremental edges 

● III: Aggregated error

● IV: Scalable optimization

�������������	��� �	�������
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● News recommendation applications: a bipartite graph
● WeChat news recommendation network is highly dynamic

○ 81 articles and 1400 reading records per second
● The network is also recency-sensitive

○ >73% articles died less than 6 hours while no one read again

○ Obvious exponential decay for article duration length.

Xumin Chen, et al. Scalable Optimization for Embedding Highly-Dynamic and Recency-Sensitive Data. KDD, 2018.(Applied)
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● We cannot guarantee convergence in-between every two timestamps.
● Just do it.

● How to do better?
● Non-uniform resource allocation.
● New edges and nodes worth more resources.

Xumin Chen, et al. Scalable Optimization for Embedding Highly-Dynamic and Recency-Sensitive Data. KDD, 2018.(Applied)
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● The Change of a node embedding vector
depends on its distance to the
changed edge.

● Diffuse across training steps
● For step !, if edge ", $ is

chosen by stochastic method

Xumin Chen, et al. Scalable Optimization for Embedding Highly-Dynamic and Recency-Sensitive Data. KDD, 2018.(Applied)
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● I  : Out-of-sample nodes

○ DepthLGP = Non-parametric GP + DNN

● II : Incremental edges 
○ DHPE: Generalized Eigen Perturbation 

● III: Aggregated error
○ TIMERS: A theoretically guaranteed SVD restart strategy

● IV: Scalable optimization

○ D-SGD: A iteration-wise weighted SGD for highly dynamic data
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• Structure-preserved network embedding

• Property-preserved network embedding

• Dynamic network embedding

• Robustness, Explainability and Applicability

• Network embedding for biomedical applications
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Research Application

Robustness Interpretability Applicability

Hot directions in computer vision:
Adversarial Explainable Scalable
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pAdversarial attacks

psmall perturbations in graph structures and node attributes
pgreat challenges for applying GCNs to node classification
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pCategories

p Targeted vs Non-targeted
p Targeted: the attacker focus on misclassifying some target nodes
p Non-targeted: the attacker aims to reduce the overall model 

performance
p Direct vs Influence

p Direct: the attacker can directly manipulate the edges or features 
of the target nodes

p Influence: the attacker can only manipulate other nodes except 
the targets

pHow to enhance the robustness of GCNs against adversarial 
attacks?



Robust Graph Convolutional Networks
pAdversarial attacks in node classification

p Connect nodes from different communities to confuse the 
classifier

pDistribution V.S. plain vectors
p Plain vectors cannot adapt to such changes
p Variances can help to absorb the effects of adversarial 

changes
p Gaussian distributions -> Hidden representations of nodes
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Gaussian Based hidden representations:
Variance terms absorb the effects of
adversarial attacks

Attention mechanism:
Remedy the propagation
of adversarial attacks

Sampling process:
Explicitly considers mathematical
relevance between means and
variances
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p Node Classification on Clean Datasets

p Against Non-targeted Adversarial Attacks
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● A real-world graph is typically formed due to many latent factors.

Social 
Circles

Different Factors

Exampl
e

p Existing GNNs/GCNs: 
p A holistic approach, that takes in 

the whole neighborhood to produce 
a single node representation.

p We suggest:
p To disentangle the latent factors. 

(By segmenting the heterogeneous parts, and learning 
multiple factor-specific representations for a node.)

p Robustness (e.g., not overreact to an irrelevant 

factor) & Interpretability. 
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Example: Three dimensions that are related skin color, age/gender, and saturation, respectively.

● That is, we aim to learn disentangled node representation,
■ A representation that contains independent components, that describes different aspects 

(caused by different latent factors) of the observation.
● The topic is well research in the field of computer vision.

■ But largely unexplored in the literature of GNNs.
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● We present DisenGCN, the disentangled graph convolutional network.

■ DisenConv, a disentangled multichannel convolutional layer (figure below).

■ Each channel convolutes features related with a single latent factor.



�	��� �������
�	
�� �����
�
● The DisenConv layer ! ⋅ takes in the neighborhood of a node, and outputs 

the node’s convoluted representation.

● It has # channels. The output is concatenated from the outputs of the 
channels.

● Each channel has its own projection matrix for extracting aspect-specific 
features. Given a node $, the extracted feature regarding aspect % is:



● A neighbor is patched to channel ! (for further in-channel graph convolution), if the 
edge between the neighbor and the center node is caused by factor !.

● But the actual causes are unknown. Neighborhood routing is therefore proposed to 
infer the latent causes, based on two hypothesis.

● The first is analogous to the second-order proximity.

● It inspires us to search for the biggest cluster in each of the " subspaces.

�	�
��������������
�� �����	�����
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● The second hypothesis is analogous to the first-order proximity.

● Hypothesis 2 is not robust if either !" or !# misses features about aspect $, 
and therefore must be combined with Hypothesis 1. But it can provide a fast 
guess.
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● Let !",$ be the probability that factor % is the reason why node & reaches 
neighbor ', which should satisfies !",$ ≥ 0 and ∑$+,-. !",$+ = 1.

● Initialization based on Hypothesis 1 (for fast convergence): 

● Iterate for 1 steps, based mainly on Hypothesis 2:
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*Results on Cora/Citeseer/Pubmed are only slightly better than GAT. See the paper for explanations.
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● Improvement is larger when #factors is relatively large (around 8).
● However, all methods are bad when #factors is extremely large.
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1 2
6

3
4

57 8
B

A C

High-order

Transitivity Global position

p Link Prediction
p Community Detection
p Node Classification
p Network Distance
p Node Importance
p …

Various network properties Various applications

• Leading to a large number of hyperparameters
• Must be carefully tuned AutoML
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• Ease the adoption of machine learning and reduce the reliance on 

human experts
• e.g., hyperparameter optimization

• Largely unexplored on network data

• Large scale issue:
• Complexity of Network Embedding is usually at least  O "

• E is the number of edges (can be 10 billion)

• Total complexity: O "# , T is the times searching for optimal 
hyperparameter

How to incorporate AutoML into massive network 
embedding efficiently? (reduce E and T)



����� �����������������
	
• A straightforward way: configuration selection on sampled sub-networks

• Transferability
• ! ≠ optimal configuration on origin network

• Heterogeneity
• several highly heterogeneous components => carefully designed sampling 

Sampled sub-network
Optimal configuration !

Origin massive network

Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, Wenwu Zhu. AutoNRL: Hyperparameter Optimization for Massive Network Representation Learning. KDD, 2019.
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Transfer the knowledge about optimal hyperparameters
from the sub-networks to the original massive network

Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, Wenwu Zhu. AutoNRL: Hyperparameter Optimization for Massive Network Representation Learning. KDD, 2019.
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The performance achieved within various time thresholds.

The number of trials to reach a certain performance threshold
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Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. A Survey on Network Embedding. IEEE TKDE, 2018.
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Ziwei Zhang, Peng Cui, Wenwu Zhu. Deep Learning on Graphs: A Survey. Arxiv, 2018.
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• Structure-preserved network embedding

• Property-preserved network embedding

• Dynamic network embedding

• Robustness, Explainability and Applicability

• Network embedding for biomedical applications



Network Embedding for Biomedical Applications

Network 

embedding in 

biomedicine

Pharmaceutical 

data analysis

Multi-omics data 

analysis

Clinical data 

analysis

Drug repositioning

Adverse drug 

reaction analysis

Genomics

Proteomics

Transcriptomics

Medical knowledge 

graph embedding

EHR embedding

1. Chang Su, Jie Tong, Yongjun Zhu, Peng Cui, Fei Wang, Network embedding in biomedical data science, Briefings in Bioinformatics, , 

bby117, https://doi.org/10.1093/bib/bby117



Pharmaceutical data analysis

❏ Drug repositioning
Exploring new usage for existing drugs.

o save drug development cost

o increase productivity

Aiming at predicting:

o unknown drug-target interactions 

o unknown drug-disease interactions 



Pharmaceutical data analysis
o Drug-target interaction prediction

Drugs Target proteins

Drug 
information, 
e.g., chemical 
similarity 
matrix

Proteomic
information, 
e.g., protein 
similarity 
matrix?

?

Matrix factorization based embedding methods, e.g., LE

1. Yamanishi Y, Araki M, Gutteridge A, et al. Prediction of drug–target interaction networks from the integration of chemical and genomic 
spaces. Bioinformatics 2008;24: i232–40.
2. Cobanoglu MC, Liu C, Hu F, et al. Predicting drug–target interactions using probabilistic matrix factorization. J Chem Inf Model 
2013;53:3399–409.
3. Zheng X, Ding H, Mamitsuka H, Zhu S. Collaborative matrix factorization with multiple similarities for pre- dicting drug–target 
interactions. KDD ’13, 2013, pp. 1025–1033. Chicago, Illinois, USA.



Pharmaceutical data analysis

o Drug-target interaction prediction (Zong et al. 2017)

1. Zong N, Kim H, Ngo V, et al. Deep mining heterogeneous networks of biomedical linked data to predict novel drug– target associations. 
Bioinformatics 2017;33:2337–44.

Drug

Target (protein)

Heterogenous network

Drug-drug interaction

Target-target interaction

Drug-target interaction

Network 
embedding 
(DeepWalk)

Drug-drug 
similarity

Target-
target 
similarity

Similarity 
based 

inference

New drug-
target 

interaction



Pharmaceutical data analysis
o Drug-disease interaction prediction (Dai et al. 2015)

1. Dai W, Liu X, Gao Y, et al. Matrix factorization-based predic- tion of novel drug indications by integrating genomic space. Comput Math 
Methods Med 2015;2015:275045.

Gene-gene network

Embedding 
(eigenvalue 

decomposition)

Gene embeddings

Drug-gene interaction

Disease-gene interaction

Genomic 
representation 

of drugs

Genomic 
representation 

of disease

Prediction
(drug-disease 

matrix 
factorization)



Pharmaceutical data analysis
o Drug-disease interaction prediction (Wang et al. 2017)

1. Wang P, Hao T, Yan J, et al. Large-scale extraction of drug– disease pairs from the medical literature. J Assoc Inf Sci Technol 
2017;68:2649–61.

27 million 
PubMed 
articles

NLP

Drug
Positive
proximity

Network 
embedding 

(persevering first-
order proximity)

Drug-
disease 

interactions

Disease

Treatment

Drug Disease

Inducement

Negative
proximity

Predicting: 
treatment &
inducement



Pharmaceutical data analysis
❏ Adverse drug reaction analysis 

An adverse drug reaction (ADR) is defined as any undesirable effect from the 
medical use of drugs beyond its anticipated therapeutic effects that occurs at a 
usual dosage.

The ADR study is implemented before a drug is launched on clinical application.

o Adverse drug reaction (ADR) prediction 

o Drug-drug interaction (DDI) prediction



Pharmaceutical data analysis

o Adverse drug reaction (ADR) prediction (Stanovsky et al. 2017)

1. Stanovsky G, Gruhl D, Mendes P. Recognizing mentions of adverse drug reaction in social media using knowledge- infused recurrent 
models. In: Proceedings of the 15th Confer- ence of the European Chapter of the Association for Computa- tional Linguistics, 2017, pp. 
142–51. Valencia, Spain.

Aspirin made me feel dizzy

BiLSTM-RNN

Pre-trained word embedding

DBpedia
KG 

embedding

If a word is a entity in DBpedia, 
then override its features with 
the DBpedia embeddings.

y1 y2 y3 y4 y5

Output labels of each word, B, I, and O: 
(B) Beginning of an ADR span; (I), Inside an ADR span; (O), Out-side of the span of an ADR

Identify ADR from social media posts: 



Pharmaceutical data analysis
o Drug-drug interaction (DDI) prediction (Abdelaziz et al. 2017)

1. Abdelaziz I, Fokoue A, Hassanzadeh O, et al. Large-scale structural and textual similarity-based mining of knowl- edge graph to predict 
drug–drug interactions. Web Semant 2017;44:104–17.

Drug knowledge 
graph

Network 
embedding

Global
similarity 

based features

Drug associated 
information (e.g., 

chemical 
structure)

Local similarity 
based features

Feature vector of 
drug-drug pair

Downstream 
classifier

Construct 



Pharmaceutical data analysis
o Drug-drug interaction (DDI) prediction (Wang et al. 2017)

1. Wang M, Chen Y, Qian B, et al. Predicting rich drug–drug interactions via biomedical knowledge graphs and text jointly embedding, 
2017, arXiv preprint arXiv:171208875.

Basic triple: ℎ, #, $
ℎ, $: entities (drug, protein, 
pathway, phenotype)
#: relation

Rich DDI triple: %, &, '
%, ': drug entities
&: text label of DDI

Heterogeneous medical 
knowledge graph

Existing drug-drug 
interactions

Basic triple encoder: Rich DDI triple encoder:

Joint learning:

Text label encoder Regularization term

New DDIs



Multi-omics data analysis
❏ Genomics data analysis
o Gene function prediction (Wang et al. 2015)

Molecular network

Gene ontology (GO)

GO label

Gene

Network embedding
(random walk 

based)
Predict

1. Wang S, Cho H, Zhai C, et al. Exploiting ontology graph for predicting sparsely annotated gene function. Bioinformatics 2015;31:i357–64



Multi-omics data analysis
o Identification of Pathways Associated with Chemosensitivity (Wang et al. 2017)

1. Wang S, Huang E, Cairns J, et al. Identification of pathways associated with chemosensitivity through net- work embedding. 2017, 
bioRxiv preprint bioRxiv: 168450 doi:10.1101/168450

B

C

A

D

1

2

3

Network 
embedding



Multi-omics data analysis
o Cell and gene representation  (Li et al. 2017)

1. Wang S, Huang E, Cairns J, et al. Identification of pathways associated with chemosensitivity through net- work embedding. 2017, 
bioRxiv preprint bioRxiv: 168450 doi:10.1101/168450

Network 
embedding

Capturing heterogeneity of cells



Multi-omics data analysis
❏ Proteomics data analysis
o Protein-protein interaction (PPI) prediction (Cannistraci et al. 2013)

1. Cannistraci CV, Alanis-Lobato G, Ravasi T. Minimum curvi- linearity to enhance topological prediction of protein interactions by network 
embedding. Bioinformatics 2013;29: i199–209.

Protein-protein 
network

Network 
embedding

Euclidean 
distance between 

protein pair

Shortest path 
length between 

protein pair

Ranking and 
predicting candidate 

protein-protein 
interactions

Experimental identification of PPIs is time-consuming.
Computational method was proposed to predict candidate PPIs based on existing interactions.  



Multi-omics data analysis
o Protein function prediction (Wang et al. 2017)

1. Wang S, Qu M, Peng J. Prosnet: integrating homology with molecular networks for protein function prediction. Pac Symp Biocomput
2017;22:27–38.

Heterogenous protein-protein network

1. Construct protein-protein network;

2. Learn low-dimensional representations for 
proteins;

3. Calculate an intra-species affinity score and an 
inter-species affinity score by transferring Gene 
annotations

4. Rank the score and pick the function(s) with the 
highest score(s) for queried protein (s)



Multi-omics data analysis
❏ Transcriptomics data analysis
o MicroRNA-disease association prediction (Li et al. 2017)

1. Li G, Luo J, Xiao Q, et al. Predicting microRNA-disease associations using network topological similarity based on DeepWalk. IEEE 
Access 2017;5:24032–9.

- microRNAs (miRNAs) are connected with several complex human diseases; 
- Identifying human disease-related miRNAs will be useful in uncovering novel prognostic 
markers for cancer.

Network 
embedding

Similarity 
learning

Predict unknown 
associations



Medical data analysis
❏ Medical knowledge graph embedding
o Safe medication recommendation (Wang et al. 2017) – predicting patient-medicine 

association

1. Wang M, Liu M, Liu J, et al. Safe medicine recommenda- tion via medical knowledge graph embedding, 2017, arXiv preprint 
arXiv:171005980

Medicine network 
embedding

Disease network 
embedding

Patient-medicine 
network embedding

Patient-disease 
network embedding

Regularization term



Medical data analysis

o Representation learning on medical forum data (Zhao et al. 2017)

1. Zhao S, Jiang M, Yuan Q, et al. ContextCare: incorporating contextual information networks to representation learn- ing on medical 
forum data. In: Proceedings of the 26th Inter- national Joint Conference on Artificial Intelligence, 2017, pp. 3497–503. AAAI Press, 
Melbourne, Australia.

Learning low-dimensional representations of diseases and symptoms.



Medical data analysis
❏ EHR embedding
o Healthcare representation learning (Choi et al. 2017)

1. Choi E, Bahadori MT, Song L, et al. GRAM: graph-based attention model for healthcare representation learning. In: Proceedings of the 
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 787–95. ACM, Halifax, Nova Scotia, 
Canada.

Knowledge graph

Node:  medical concept

Attention is assigned to the node (medical concept)
embedding:

- EHR representation with hierarchical information inherent to medical ontologies;
- The model represents a medical concept as a combination of its ancestors in the ontology via an 
attention mechanism.



Network Embedding for Biomedical Applications
❏ Challenges

o Data quality. Networks constructed from the biomed- ical data are usually noisy 
and incomplete. For example, the PPI data produced by high-throughput 
techniques, suffer from high false negative rates up to 70% and high false positive 
rates up to 64%.

o Local and global. Network embedding and its downstream tasks rely on the type 
of structural property to preserve. Designing embedding method by properly 
considering local and global structure properties require the development of novel 
solutions.

o Network evolution. Networks are always not static, especially in the biomedical 
domain. Yet most existing embedding models focus on static network.

o Domain complexity. Network structure is highly associated with domain 
knowledge.



Network Embedding for Biomedical Applications
❏ Opportunities 

o Local and global trade-off embedding. 

o Dynamic network embedding. 

o Text associated embedding. Medical knowledge bases always contain rich text 
information such as descriptions of entities and relations, which would have high 
potential to address network incompleteness and improve under- standing of 
topological properties.

o Domain-knowledge-associated embedding. Incorporating external domain 
knowledge into network embedding.



• Structure-preserved network embedding
• Guarantee information equivalence

• Property-preserved network embedding
• Enabling network inference in embedding space

• Dynamic network embedding
• Incorporating dynamic changes

• Robustness, Explainability and Applicability
• Promote network embedding in real applications

• Network embedding for biomedical applications
• Prove the effectiveness of NE in real applications

Summary and Conclusion


