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Features from networks

To facilitate various graph mining algorithms, the first step is to obtain 
the graph features (we focus on node features)

● Scenario 1: w/o explicit node features (plain networks)
§ Extract hand-crafted features
§ E.g., node degree, clustering coefficient, pagerank score, …

● Scenario 2: w/ explicit node features (attributed networks)
§ Leverage the observed node features
§ E.g., profiles of users in social networks, gene expression of 

proteins in PPI networks, research interests of scholars in 
collaboration networks, … 4



High-dimensional features

The features of nodes are often in a high-dimensional feature space

● Scenario 1: w/o explicit node features
§ Manual feature engineering generate a large number of features
§ Not clear what features could be useful for learning on graphs

● Scenario 2: w/ explicit node features
§ Observed features are very high-dimensional, noisy, and sparse
§ The intrinsic dimension of data may be small, e.g., the number of 

genes responsible for a certain disease

5
High-dimensional data is often notorious to 
tackle due to the curse of dimensionality



Curse of dimensionality - overfitting

● If ! (the number of features) is large, the model can be overfitting as 
" (the number of nodes) is insufficient for parameter estimation

● For instance, to estimate the covariance matrix with !# parameters, 
we need " > !#; otherwise we have less than one node (on 
average) per parameter
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Curse of dimensionality – require more samples

● Data sparsity becomes exponentially worse as the feature 
dimension increases

● Conventional distance metrics become ineffective
7

3 samples per region 1 sample per region 1/3 sample per region
http://nikhilbuduma.com/2015/03/10/the-curse-of-dimensionality/



Curse of dimensionality - summary

● The curve of learning performance w.r.t. the feature dimension !

● PAC learning theory - sample complexity                                    
grows exponentially w.r.t. dimension !

● If we reduce !, we can make data “bigger”
§ Before reducing !, 5/2%&=5/2%&
§ After reducing !, 5/2'=5/8

8

if H is the set of 
Boolean functions



Dimensionality reduction

● Dimensionality reduction is a good way to combat the curse of 
dimensionality

● Represent instances (nodes) with fewer features

● Dimensionality reduction algorithms
§ Feature extraction
§ Feature selection
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Feature extraction

● Project the original high-dimensional data into a new feature space 
of low dimensionality

● Given a set of ! nodes {#$, #&, … , #(} with * features, obtain the low-
dimensional representations:

+, ∈ ℝ/ → 1, ∈ ℝ2 (4 ≪ *)

● The new feature space is usually a linear or a nonlinear combination 
of the previous feature space

● The new features often do not have physical meanings
10



Feature selection

● Feature selection selects an “optimal” subset of features from the 
original high-dimensional feature set with a certain criterion

● Compared with feature extraction, feature selection gives models 
better readability and interpretability
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Relevant, redundant and irrelevant features

● Feature selection keeps relevant features for learning and removes 
redundant and irrelevant features

● For example, for a binary classification task (!" is relevant; !# is 
redundant given !"; !$ is irrelevant)
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Categorization of feature selection algorithms

● From the label perspective:
§ Supervised
§ Unsupervised
§ Semi-Supervised

● From the selection strategy perspective:
§ Wrapper methods
§ Filter methods
§ Embedded methods

13



Supervised feature selection

● Supervised feature selection is often for classification or regression
● Find discriminative features that separate samples from different 

classes (classification) or approximate target variables (regression)
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Unsupervised feature selection

● Label information is expensive to obtain 
● Unsupervised methods seek alternative criteria to define the 

relevance of features
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Semi-supervised feature selection

● We often have a small amount of labeled data and a large amount 
of unlabeled data

● Semi-supervised methods exploit both labeled and unlabeled data 
to find relevant features
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Wrapper methods

● Rely on the predictive performance of a predefined algorithm
● Repeat until some stopping criteria are satisfied
● Achieve high accuracy for a particular learning method
● Computational expensive (worst case search space is 2"), some 

typical search strategies are sequential search, best-first search, …
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Ø Step 1: search for a subset of features
Ø Step 2: evaluate the selected features
Ø Repeat Step 1 and 2 until stopped



Filter methods

● Independent of any learning algorithms
● Relying on certain characteristics of data to assess feature 

importance (e.g., feature correlation, mutual information…)
● More efficient than wrapper methods
● The selected features may not be optimal for a particular learning 

algorithm

18



Embedded methods

● A trade-off between wrapper and filter methods by embedding 
feature selection into the model learning, e.g., decision tree

● Inherit the merits of wrapper and filter methods
§ Include the interactions with the learning algorithm
§ More efficient than wrapper methods

19



How to perform feature 
selection on plain networks?

20



Scenario 1: w/o explicit node features
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Conventional feature selection algorithms

We categorize feature selection methods mainly according to 
their adopted techniques
§ Similarity based methods
§ Information theoretical based methods
§ Sparse learning based methods
§ Statistical based methods

22



Similarity based feature selection

Similarity based methods assess the importance of features by their 
ability to preserve data similarity
§ A good feature should assign similar values to instances that are close 

to each other – (the “closeness” is obtained from data similarity matrix)

23

Ø Different colors denote different classes
Ø Different shapes denote different values 

assigned by a feature



Similarity based methods - similarity matrix

● Pairwise data similarity is often encoded in the data similarity matrix

● E.g., network data - explicitly given (adjacency matrix)

● E.g., w/o class labels - RBF kernel

● E.g., w/ class label - class labels
24



Similarity based methods - framework

● Suppose data similarity matrix is ! ∈ ℝ$×$, to find the & most 
relevant features ', we need to maximize: 

● It is often solved by greedily selecting the top & features that 
maximize their individual utility ( )

● Different methods vary in the way how the vector * and similarity 
matrix ! are transformed to +* and ,!

25

transformation of * transformation of !utility of feature set - utility of feature )
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Fisher score [Duda et al., 2001] 

● Given class labels, within class and between class data similarity 

matrix !" (local affinity) and !# (global affinity) are defined as

● A good feature make instances from different classes far away and

make instances from the same class close to each other

● The score of the i-th feature $% is

Laplacian matrix obtained 

from !" and !#



Laplacian score [He et al., 2005]

● First, it builds the data similarity matrix !, diagonal matrix " and 
Laplacian matrix # without using class labels

● Motivation: a good feature should (1) preserve data similarity 
structure; and (2) have high feature variance

● Then the Laplacian Score of feature $% is:

● Laplacian score is also equivalent to:                         

27

Measure the consistency of 
features on the similarity matrix 
(smaller, the better)

Feature variance (higher, 
the better)



Information theoretical based methods

● Exploit different heuristic filter criteria to measure the importance of 
features

● Our target is to find these “optimal” features

28



Information theoretical based methods

● Searching for the best feature subset is NP-hard, most methods 
employ forward/backward sequential search heuristics 

● E.g., for forward search, given selected features !, we should do 
the following for the next selected feature "#

§ Maximize its correlation with class labels $:

§ Minimize the redundancy w.r.t. selected features in !:

§ Maximize its complementary info w.r.t. selected features in !: 

29

Information Gain

Conditional Information Gain

Information Gain



Information theoretic based methods - framework

● Given selected features !, the feature score for the next selected 
feature "# can be determined by

● If $ ∗ is a linear function, then it can be represented as

● But also, $ ∗ can be a nonlinear function
30

$(∗): a function

Between 0 and 1



Information gain [Lewis, 1992]

● Information gain only measures the feature importance by its 
correlation with class labels 

● The information gain of a new unselected feature !"

● Selecting features independently
● It is a special case of the linear function by setting # = % = 0

31



Min. redundancy max. relevance [Peng et al., 2005]

● Intuitively, with more selected features, the effect of feature 
redundancy should gradually decrease

● The score of a new unselected feature !" is

● MRMR is also a special case of the linear function by setting # =
0 and adjusting & adaptively

32

reduced effect of 
feature redundancy



Sparse learning based methods

● The selected features of aforementioned methods may not be 
optimal for a particular learning task

● Embedded methods embed feature selection into model 
construction – two phases complement each other

● Sparse learning based methods is a popular type of embedded 
methods with several advantages

○ With strong theoretical guarantee
○ Empirical success in many real-world applications
○ Flexible models for complex feature structures

33



What is feature sparsity?

● The model parameters in many data mining tasks can be 
represented as a vector ! or a matrix "

● Sparsity indicates that many elements in ! and " are small or 
exactly zero

34

model parameter 
! is a vector

Sparsity

model parameter 
" is a matrix

or



Sparse learning methods - framework

● Let us start from the binary classification or the univariate 
regression problem

● Let ! denote the model parameter (a.k.a. feature coefficient), it can 
be obtained by solving

35

Balance parameter

• Least squares loss
• Hinge loss
• Logistic loss…

• ||!||# seeks for optimal features
• However, it is not a valid norm, 

nonconvex and NP-hard
• It is often relaxed to ||!||$ (Lasso), 

which is the tightest convex hull



Lasso [Tibshirani, 1996]

● Based on ℓ"-norm regularization on weight #

● Why ℓ"-norm induces sparsity?
36

The feature score of the i-th feature is |#%|; the higher 
the value, the more important the feature is



Extension to multi-class or multivariate problems

● Require feature selection results to be consistent across multiple 
targets in multi-class classification or multi-variate regression

● ||"||#,% achieves joint feature sparsity across multiple targets

37

The feature score of the i-th feature 
is ||"&∗||# - the higher the value, the 
more important the feature is



Unsupervised sparse learning based methods

● Without class labels, we attempt to find discriminative features that 
can preserve data clustering structure 

● There are two options
§ Obtain clusters and then perform FS (e.g., MCFS)
§ Embed FS into clustering (e.g., NDFS)

● The 2nd option is preferred as not all features are useful to find 
clustering structure

38



Statistical based methods

● This family of algorithms are based on different statistical measures 
to measure feature importance

● Most algorithms evaluate features individually, so the feature 
redundancy is inevitably ignored

● Most algorithms can only handle discrete data, the numerical 
features have to be discretized first

39



T-Score [Davis and Sampson, 1986]

● It is used for binary classification problems
● Assess whether the feature makes the means of samples from two 

classes statistically significant
● The t-score of each feature !" is 

● The higher the T-score, the more important the feature is 
40

Mean value of samples 
from the first class

Mean value of samples 
from the second class

Standard deviation value for 
samples from the second class

Standard deviation value for 
samples from the first class



Chi-square score [Liu and Setiono, 1995]

● Utilize independence test to assess whether the feature is 
independent of class label

● Given a feature !" with # values, its feature score is

● Higher chi-square indicates that the feature is more important
41

# instances with the $-th
feature value and in class %

# instances with the $-
th feature value

# instances in class %



How to perform feature 
selection on attributed 

networks?

42



Scenario 2: w/ explicit node features
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Why linked feature selection?

● Social Influence & Homophily: node features and network are 
inherently correlated – assortativity patterns

● Many learning tasks are enhanced by modeling the correlation
§ Community detection
§ Anomaly detection
§ Node classification

● But not all features are highly correlated with network structure!
44



FSNet [Gu and Han, 2011]

● Use a linear classifier to capture the relationship between observed 
node features ! and class labels "

● Employ graph regularization to model links

● Objective function of FSNet

45

Joint feature sparsity
Avoid overfitting

#: transition matrix of random walk
$: stationary distribution

undirected network

directed network



LinkedFS [Tang and Liu, 2012]

● Investigate feature selection on social media data with various 
types of social relations: four basic types

● These social relations are supported by the assortativity patterns
46

!": user  #": post  

A user can have 
multiple posts

Two users follow 
a third user

Two users followed 
by a third user

A user follows 
another user



LinkedFS [Tang and Liu, 2012]

● For CoPost hypothesis
§ Posts by the same user are likely to be of similar topics

● Feature selection with the CoPost hypothesis

● Observations

47

CoPost hypothesis

CoPost relations
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Personalized FS [Li et al., 2017]

● Features of nodes are highly idiosyncratic

● How to address the idiosyncrasy nature of node attributes?
● Solution: find a subset of personalized features for each individual

and shared features for all

student who wants to 
buy apple product

businessman who holds 
a lot of apple stock

[Wu et al. 2016]
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Personalized feature selection [Li et al., 2017]

● To find personalized features, we attempt to achieve feature 
sparsity within each local feature weight

● To reduce overfitting, we impose penalty on the local feature weight

global feature weight
for all nodes

local feature weight
for the !-th nodes

exclusive group lasso
for personalized features

group lasso for 
shared features

Incentivize local feature weight difference to be exactly zero
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Comparison with global feature selection methods

Node classification on Cora

PRL outperforms FsNet, showing the 
effectiveness of finding personalized features



LUFS [Tang and Liu, 2012]

● Nodes are often unlabeled on networks

● No explicit signal for feature relevance

● Fortunately, links provide additional constraints

51

Community Structure of Nodes

(a.k.a. social dimensions)



LUFS [Tang and Liu, 2012]

● Obtain within, between, and total social dimension scatter matrices

● Instances are similar within social dimensions while dissimilar 
between social dimensions

● Attribute similarity should be consistent of pseudo label similarity

● Objective function of LUFS

52

Weighted social dimension matrix

similarity matrix using RBF

Pseudo labels



NetFS [Li et al., 2016]

● LUFS performs network structure modeling and feature selection 
separately

● NetFS embeds latent representation modeling into feature selection 
and is more robust to noise links

53Difference between LUFS and NetFS



NetFS [Li et al., 2016]

54

Latent representation of 
nodes as constraints

Latent representation

Joint feature sparsity
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Comparison between NetFS vs. LUFS

● Perform unsupervised feature selection then apply K-means
● Evaluate feature quality by clustering results

Conventional feature 
selection with features

Separate the network 
structure modeling and 
feature selection

The proposed NetFS
performs better!
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Summary

● Curse of dimensionality and dimensionality reduction

● Feature selection and its categorization

● Conventional feature selection w/o explicit node features

● Linked feature selection w/ explicit node features


