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The general description of data and their relations
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Can you name a case where only care about an object 
but not its relations with other subjects?

Reflected by relational subjects Decided by relational subjects 

Target

Target

Image Characterization Social Capital
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Social Networks Biology Networks Finance Networks

Internet of Things Information Networks Logistic Networks
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● The last resort for the curse of complexity in real applications

○ Geographical networks, relationships, …

● Divide-and-conquer in modeling
○ Individual nodes and edges are well structured

○ Global structures are weakly organized
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● Multiple possible views

○ Micro view: nodes and edges

○ Macro view: global structures and properties

○ Temporal view: changes over time

● Many important tasks
○ Patterns, classification, prediction, clustering, outlier detection, …
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● Key assumptions in efficient data processing
○ Well structured data

○ Synchronized

● Challenges in graph and network data
○ Some basic structures, but many unstructured elements
○ Asynchronous 
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Recommendation Systems
Link prediction in 
bipartite graphs
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Financial credit & risk management Node importance & classification
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New material discovery Subgraph pattern discovery
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Centrality Problem

Isomorphism Problem

Routing Problem

…

Graph 
Theory

Billion 
nodesChallenge 1: Problem Scale 

Real networks
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Clustering effect

Graph 
Analysis

Challenge 2: Complexity and Diversity

Graph Patterns Applications

Link prediction

Community detection

Anomaly detection

…

Triadic Closure

Power-law
Real Networks

High 
Complexity

High 
Diversity
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Progressive development of learning related fields

Raw Data
Feature 
Crafting

Feature 
Selection 

Representation 
Learning

End-to-end 
Learning

Go through a similar development path?



���
������
�
� ����
	�

Provide general learning solutions to various tasks over a diverse 
range of complex networks.

Raw Data
Feature 
Crafting

Feature 
Selection 

Representation 
Learning

End-to-end 
Learning

Graph Theory 
and Analysis

Graph Feature 
Selection

Network 
Embedding

Graph Neural 
Network
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❏ High-dimensional features

Feature selection 

❏ Topological feature representation
Netowork embedding

❏ Fusion of topological and semantic information
Attribute network embedding

❏ End-to-end framework
Graph neural network
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❏ High-dimensional features

Feature selection 

❏ Topological feature representation
Netowork embedding

❏ Fusion of topological and semantic information
Attribute network embedding

❏ End-to-end framework
Graph neural network
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Features of nodes are often in a high-dimensional feature space

● Scenario 1: without explicit node features

§ Manual feature engineering methods can generate a large number of features

§ Not clear what features may be useful for learning on graphs

● Scenario 2: with explicit node features

§ Observed node features are very high-dimensional, noisy, and sparse

§ The intrinsic dimensionality of data may be small, e.g., the number of genes responsible for a 
certain disease
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High-dimensional data is often notorious to 
tackle due to the curse of dimensionality
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19
19Selected features

Manual Feature 
Engineering

Conventional 
Feature Selection

Input Network

Hand-Crafted 
Features

Off-the-Shelf 
Learning Models

Ø Classification
Ø Clustering
Ø Anomaly Detection
Ø Visualization

Node Labels
(optional)
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Directly perform feature selection 
on the observed node attributes

+
Capture the inherent 

correlations

Observed 
Features

Node Labels
(optional)

Selected features

Linked 
Feature Selection

Off-the-Shelf 
Learning Models

Ø Classification
Ø Clustering
Ø Anomaly Detection
Ø Visualization
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❏ High-dimensional features

Feature selection 

❏ Topological feature representation
Netowork embedding

❏ Fusion of topological and semantic information
Attribute network embedding

❏ End-to-end framework
Graph neural network
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G = ( V, E ) G = ( V )
Vector Space

generate

embed

• Easy to parallelize

• Can apply classical ML methods

��	���������
����
��	 ��



23

Goal Support network inference in vector space

Reflect network 
structure

Maintain network 
properties

B

A C

Transitivity
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• Structure-preserved network embedding

• Property-preserved network embedding

• Dynamic network embedding

• Robustness, Interpretability and Applicability



������
�
����
��
� ��������
������
�	�
❏ High-dimensional features

Feature selection 

❏ Topological feature representation
Netowork embedding

❏ Fusion of topological and semantic information
Attribute network embedding

❏ End-to-end framework
Graph neural network
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● Node attributes are prevalent in real-world networks
● Examples: user content in social media, reviews in co-purchasing 

networks, & paper abstracts in citation networks
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● Focuses:
Joint learning, embedding networks, & accelerating optimization

● Methods:
Coupled spectral embedding
Coupled matrix & tri-factorization
Random walk based embedding

● Techniques:
Coupling, spectral graph theory,
distributed optimization, random
walks, etc.
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● Focuses:
Deep architectures for networks & joint learning

● Methods:
Objective function based deep embedding
Graph neural networks

● Architectures:
Graph convolutional networks
Graph recurrent networks
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● Focuses:
Interpretable embedding, & utilizing network embedding to
incorporate human knowledge

● Methods:
Interpretable node representation learning.
Attributed network analysis with humans in the loop

● Techniques:
Linking embedding with interpretable
node attributes, encode knowledge
as links, etc.

Oracle
· ·

·

·

·

·

4

2

6

1

3

5

Prototype Nodes:

Query Pool:

1 3

Formulate Expert Cognition as Edges

Contextual Bandit2 4 5 6

Query
5

1

Cluster 1 Cluster 2

Update the Model of Cluster 2
Initial Attributed

Network
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❏ High-dimensional features

Feature selection 

❏ Topological feature representation
Netowork embedding

❏ Fusion of topological and semantic information
Attribute network embedding

❏ End-to-end framework
Graph neural network
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Input: 
Adjacency Matrix

!

Random Walk Skip Gram

" = $(!) (dense) Matrix 
Factorization

Output: 
Vectors
'

(sparse) Matrix 
Factorization ' = $('′)

) = $(!)′)
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2005: Gori et al., IJCNN’05

2015: Duvenaud et al., NIPS’15; Kipf & Welling ICLR’17

2018: Velickovic et al., ICLR’18, Chen et al., ICLR 2018FastGCNs, Graph attention

Graph convolutional network

Graph neural network

Neural message passing, GraphSage 2017: Gilmer et al., ICML’17; Hamilton et al., NIPS’17

2014: Bruna et al., ICLR’14 Spectral graph convolution

Gated graph neural network 2016: Li et al., ICLR’16
structure2vec 2016: Dai et al., ICML’16
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● Heterogeneous knowledge graphs
● Online recommendation 
● Online to offline recommendation
● Anomaly detection in FinTech



30 mins 
AM

Motivations

50 mins 
AM

Feature 
Selection

130 mins
AM

Network 
Embedding

90 mins
PM

Attributed Network 
Embedding

120 mins
PM

Graph Neural 
Networks
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