

Learning From Networks

——Algorithms, Theory, & Applications

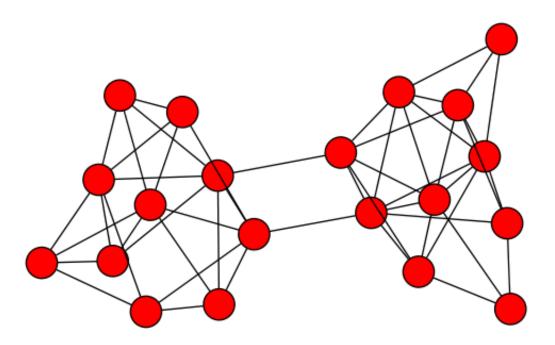
Xiao Huang*, Peng Cui*, Yuxiao Dong*, Jundong Li, Huan Liu, Jian Pei, Le Song, Jie Tang, Fei Wang, Hongxia Yang, Wenwu Zhu

xhuang@tamu.edu; cuip@tsinghua.edu.cn; yuxdong@microsoft.com; jundongl@asu.edu; huan.liu@asu.edu; jpei@cs.sfu.ca; le.song@antfin.com; jietang@tsinghua.edu.cn; few2001@med.cornell.edu; yang.yhx@alibaba-inc.com; wwzhu@tsinghua.edu.cn

Joint first authors, the others are listed in alphabetical order

Network (Graph)

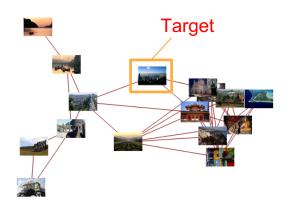
The general description of data and their relations



Why network is important?

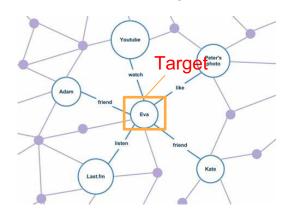
Can you name a case where only care about an object but not its relations with other subjects?

Image Characterization



Reflected by relational subjects

Social Capital



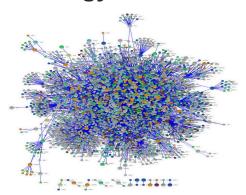
Decided by relational subjects

Graph/network data is everywhere

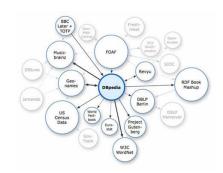
Social Networks

Internet of Things

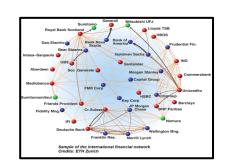
Biology Networks



Information Networks



Finance Networks



Logistic Networks

Graph as a data model

- The last resort for the curse of complexity in real applications
 - Geographical networks, relationships, ...
- Divide-and-conquer in modeling
 - Individual nodes and edges are well structured
 - Global structures are weakly organized

Mining graphs and networks

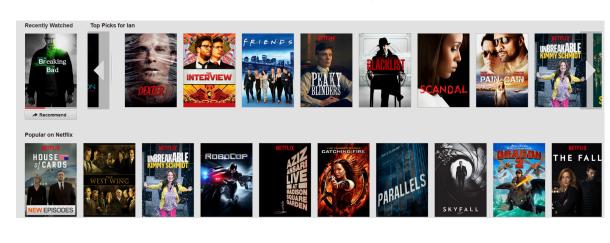
- Multiple possible views
 - Micro view: nodes and edges
 - Macro view: global structures and properties
 - Temporal view: changes over time
- Many important tasks
 - Patterns, classification, prediction, clustering, outlier detection, ...

Why is graph and network mining challenging?

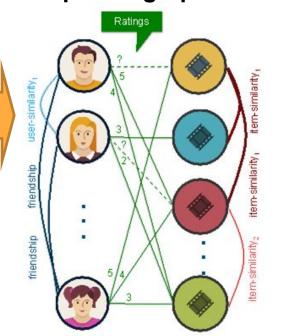
- Key assumptions in efficient data processing
 - Well structured data
 - Synchronized
- Challenges in graph and network data
 - Some basic structures, but many unstructured elements
 - Asynchronous

Many applications are intrinsically network problems

Recommendation Systems



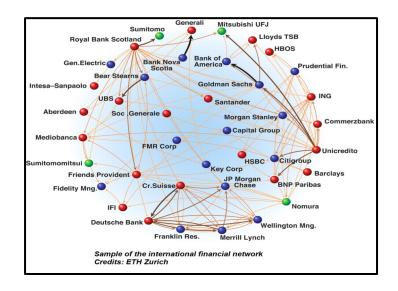
Link prediction in bipartite graphs



Many applications are intrinsically network problems

Financial credit & risk management

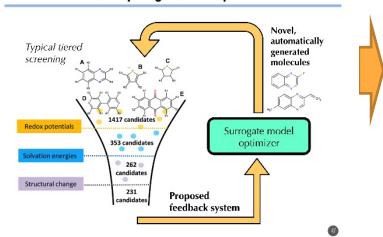
Node importance & classification



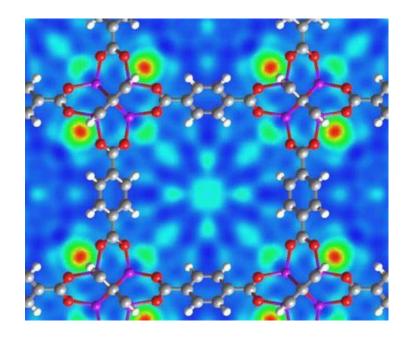
Many applications are intrinsically network problems

New material discovery

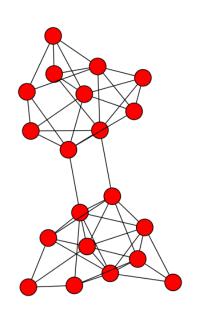
Materials discovery engine concept



Subgraph pattern discovery



Traditional methods – graph theory



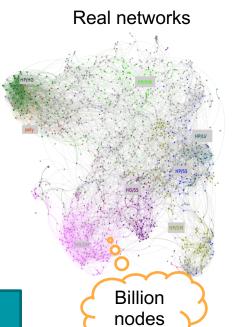
Graph Theory

Centrality Problem

Isomorphism Problem

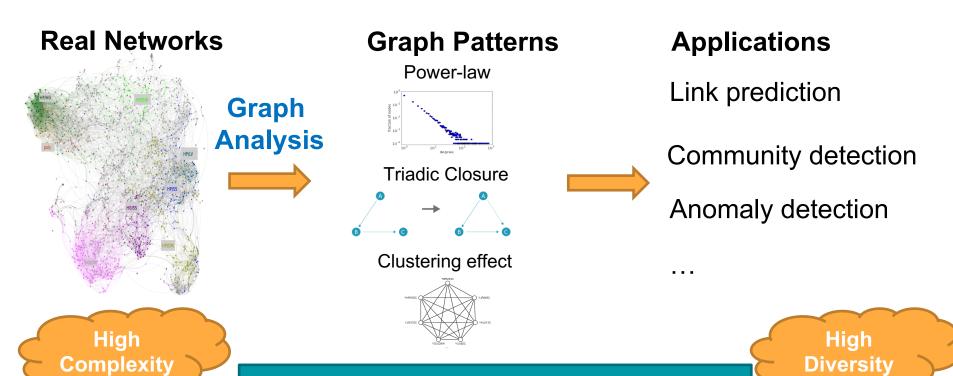
Routing Problem

. . .



Challenge 1: Problem Scale

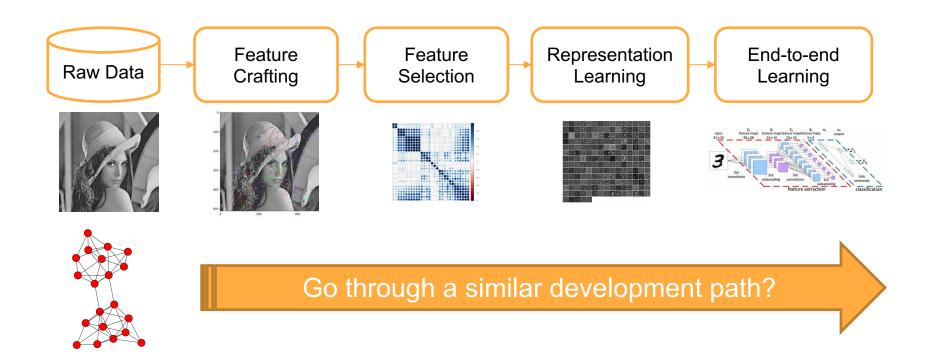
Traditional methods – graph analysis



Challenge 2: Complexity and Diversity

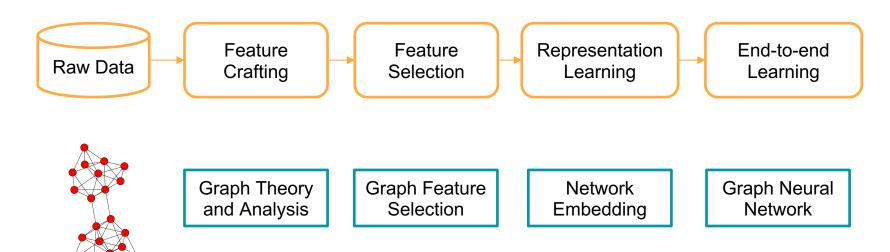
From graph theory and analysis to learning

Progressive development of learning related fields



Learning from Networks

Provide general learning solutions to various tasks over a diverse range of complex networks.



Key problems of learning from networks

High-dimensional features

Feature selection

Topological feature representation

Netowork embedding

Fusion of topological and semantic information

Attribute network embedding

□ End-to-end framework

Graph neural network

Key problems of learning from networks

High-dimensional features

Feature selection

□ Topological feature representation

Netowork embedding

□ Fusion of topological and semantic information

Attribute network embedding

□ End-to-end framework

Graph neural network

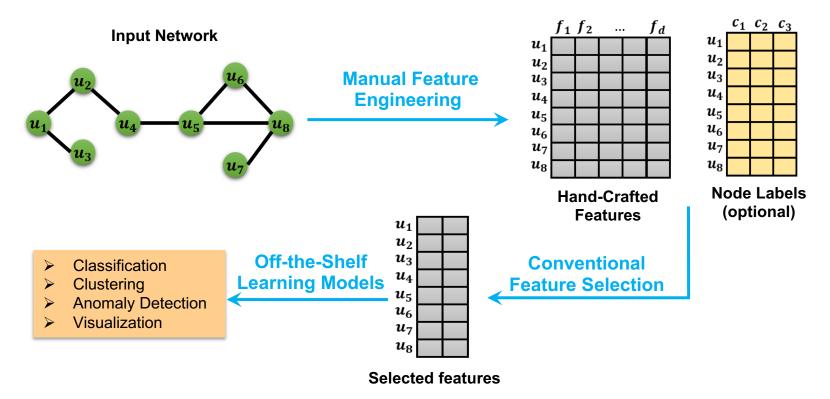
High-dimensional features

Features of nodes are often in a high-dimensional feature space

- Scenario 1: without explicit node features
 - Manual feature engineering methods can generate a large number of features
 - Not clear what features may be useful for learning on graphs
- Scenario 2: with explicit node features
 - Observed node features are very high-dimensional, noisy, and sparse
 - The intrinsic dimensionality of data may be small, e.g., the number of genes responsible for a certain disease

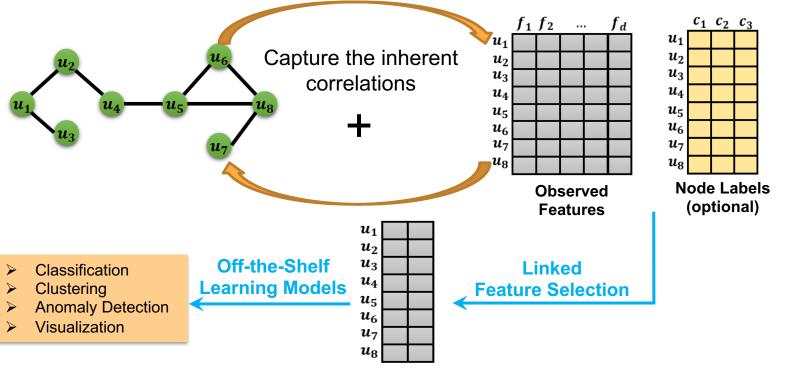
High-dimensional data is often notorious to tackle due to the *curse of dimensionality*

Feature selection without explicit node features



Feature selection with explicit node features

Directly perform feature selection on the observed node attributes



Key problems of learning from networks

☐ High-dimensional features

Feature selection

□ Topological feature representation

Netowork embedding

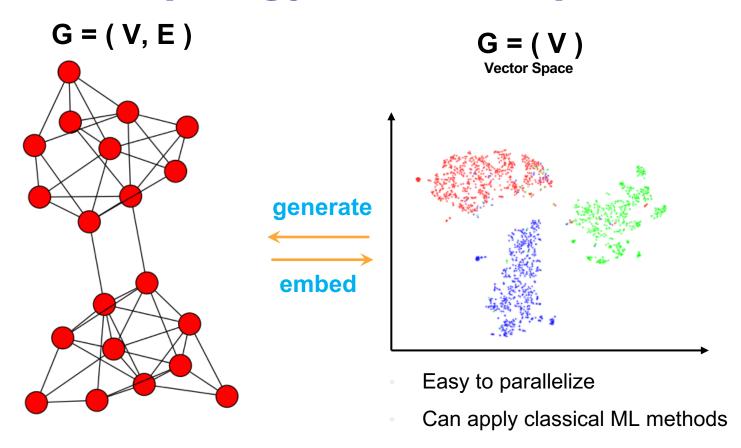
□ Fusion of topological and semantic information

Attribute network embedding

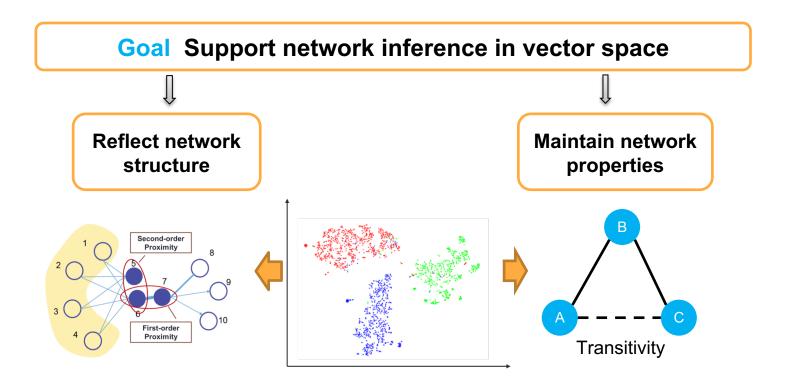
□ End-to-end framework

Graph neural network

Topology to vector space



Basic requirements of network embedding



Key issues in network embedding

- Structure-preserved network embedding
- Property-preserved network embedding
- Dynamic network embedding
- Robustness, Interpretability and Applicability

Key problems of learning from networks

☐ High-dimensional features

Feature selection

□ Topological feature representation

Netowork embedding

Fusion of topological and semantic information

Attribute network embedding

□ End-to-end framework

Graph neural network

How to Jointly Embed Node Attributes & Network?

- Node attributes are prevalent in real-world networks
- Examples: user content in social media, reviews in co-purchasing networks, & paper abstracts in citation networks

Mining attributed networks with shallow embedding

Focuses:

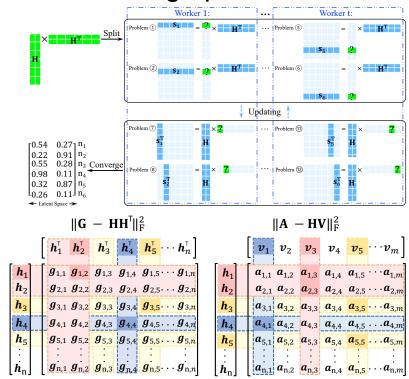
Joint learning, embedding networks, & accelerating optimization

Methods:

Coupled spectral embedding Coupled matrix & tri-factorization Random walk based embedding

Techniques:

Coupling, spectral graph theory, distributed optimization, random walks, etc.



Mining attributed networks with deep embedding

- Focuses:
 Deep architectures for networks & joint learning
- Methods:
 Objective function based deep embedding
 Graph neural networks
- Architectures:
 Graph convolutional networks
 Graph recurrent networks

Human-centric Network Analysis

• Focuses:

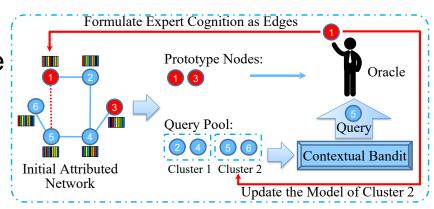
Interpretable embedding, & utilizing network embedding to incorporate human knowledge

Methods:

Interpretable node representation learning.
Attributed network analysis with humans in the loop

• Techniques:

Linking embedding with interpretable node attributes, encode knowledge as links, etc.

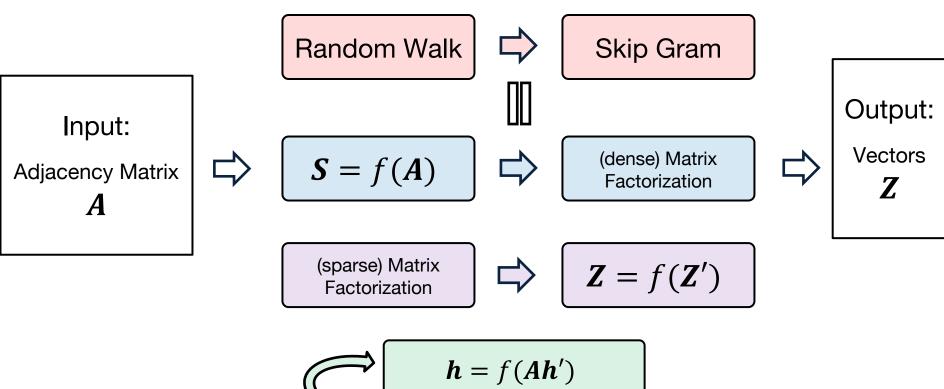


Key problems of learning from networks

- ☐ High-dimensional featuresFeature selection
- □ Topological feature representation
 Netowork embedding
- ☐ Fusion of topological and semantic information

 Attribute network embedding
- ☐ End-to-end frameworkGraph neural network

Connecting NE with Graph Neural Networks



Graph Neural Networks

FastGCNs, Graph attention

2018: Velickovic et al., ICLR'18, Chen et al., ICLR 2018

Neural message passing, GraphSage

2017: Gilmer et al., ICML'17; Hamilton et al., NIPS'17

Gated graph neural network structure2vec

2016: Li et al., ICLR'16 2016: Dai et al., ICML'16

Graph convolutional network

2015: Duvenaud et al., NIPS'15; Kipf & Welling ICLR'17

Spectral graph convolution

2014: Bruna et al., ICLR'14

Graph neural network

2005: Gori et al., IJCNN'05

Real world applications

- Heterogeneous knowledge graphs
- Online recommendation
- Online to offline recommendation
- Anomaly detection in FinTech

