

Learning From Networks

——Algorithms, Theory, & Applications

Xiao Huang*, Peng Cui*, Yuxiao Dong*, Jundong Li, Huan Liu, Jian Pei, Le Song, Jie Tang, Fei Wang, Hongxia Yang, Wenwu Zhu

xhuang@tamu.edu; cuip@tsinghua.edu.cn; yuxdong@microsoft.com; jundongl@asu.edu; huan.liu@asu.edu; jpei@cs.sfu.ca; le.song@antfin.com; jietang@tsinghua.edu.cn; few2001@med.cornell.edu; yang.yhx@alibaba-inc.com; wwzhu@tsinghua.edu.cn

Joint first authors, the others are listed in alphabetical order

Network (Graph)

The general description of data and their relations

Why network is important?

Can you name a case where only care about an object but not its relations with other subjects?

Image Characterization

Reflected by relational subjects

Social Capital

Decided by relational subjects

Graph/network data is everywhere

Social Networks

Internet of Things

Biology Networks

Information Networks

Finance Networks

Logistic Networks

Graph as a data model

- The last resort for the curse of complexity in real applications
 - Geographical networks, relationships, ...
- Divide-and-conquer in modeling
 - Individual nodes and edges are well structured
 - Global structures are weakly organized

Mining graphs and networks

- Multiple possible views
 - Micro view: nodes and edges
 - Macro view: global structures and properties
 - Temporal view: changes over time
- Many important tasks
 - Patterns, classification, prediction, clustering, outlier detection, ...

Why is graph and network mining challenging?

- Key assumptions in efficient data processing
 - Well structured data
 - Synchronized
- Challenges in graph and network data
 - Some basic structures, but many unstructured elements
 - Asynchronous

Many applications are intrinsically network problems

Recommendation Systems

Link prediction in bipartite graphs

Many applications are intrinsically network problems

Financial credit & risk management

Node importance & classification

Many applications are intrinsically network problems

New material discovery

Materials discovery engine concept

Subgraph pattern discovery

Traditional methods – graph theory

Graph Theory

Centrality Problem

Isomorphism Problem

Routing Problem

. . .

Challenge 1: Problem Scale

Traditional methods – graph analysis

Challenge 2: Complexity and Diversity

From graph theory and analysis to learning

Progressive development of learning related fields

Learning from Networks

Provide general learning solutions to various tasks over a diverse range of complex networks.

Key problems of learning from networks

High-dimensional features

Feature selection

Topological feature representation

Netowork embedding

Fusion of topological and semantic information

Attribute network embedding

□ End-to-end framework

Graph neural network

Key problems of learning from networks

High-dimensional features

Feature selection

□ Topological feature representation

Netowork embedding

□ Fusion of topological and semantic information

Attribute network embedding

□ End-to-end framework

Graph neural network

High-dimensional features

Features of nodes are often in a high-dimensional feature space

- Scenario 1: without explicit node features
 - Manual feature engineering methods can generate a large number of features
 - Not clear what features may be useful for learning on graphs
- Scenario 2: with explicit node features
 - Observed node features are very high-dimensional, noisy, and sparse
 - The intrinsic dimensionality of data may be small, e.g., the number of genes responsible for a certain disease

High-dimensional data is often notorious to tackle due to the *curse of dimensionality*

Feature selection without explicit node features

Feature selection with explicit node features

Directly perform feature selection on the observed node attributes

Key problems of learning from networks

☐ High-dimensional features

Feature selection

□ Topological feature representation

Netowork embedding

□ Fusion of topological and semantic information

Attribute network embedding

□ End-to-end framework

Graph neural network

Topology to vector space

Basic requirements of network embedding

Key issues in network embedding

- Structure-preserved network embedding
- Property-preserved network embedding
- Dynamic network embedding
- Robustness, Interpretability and Applicability

Key problems of learning from networks

☐ High-dimensional features

Feature selection

□ Topological feature representation

Netowork embedding

Fusion of topological and semantic information

Attribute network embedding

□ End-to-end framework

Graph neural network

How to Jointly Embed Node Attributes & Network?

- Node attributes are prevalent in real-world networks
- Examples: user content in social media, reviews in co-purchasing networks, & paper abstracts in citation networks

Mining attributed networks with shallow embedding

Focuses:

Joint learning, embedding networks, & accelerating optimization

Methods:

Coupled spectral embedding Coupled matrix & tri-factorization Random walk based embedding

Techniques:

Coupling, spectral graph theory, distributed optimization, random walks, etc.

Mining attributed networks with deep embedding

- Focuses:
 Deep architectures for networks & joint learning
- Methods:
 Objective function based deep embedding
 Graph neural networks
- Architectures:
 Graph convolutional networks
 Graph recurrent networks

Human-centric Network Analysis

• Focuses:

Interpretable embedding, & utilizing network embedding to incorporate human knowledge

Methods:

Interpretable node representation learning.
Attributed network analysis with humans in the loop

• Techniques:

Linking embedding with interpretable node attributes, encode knowledge as links, etc.

Key problems of learning from networks

- ☐ High-dimensional featuresFeature selection
- □ Topological feature representation
 Netowork embedding
- ☐ Fusion of topological and semantic information

 Attribute network embedding
- ☐ End-to-end frameworkGraph neural network

Connecting NE with Graph Neural Networks

Graph Neural Networks

FastGCNs, Graph attention

2018: Velickovic et al., ICLR'18, Chen et al., ICLR 2018

Neural message passing, GraphSage

2017: Gilmer et al., ICML'17; Hamilton et al., NIPS'17

Gated graph neural network structure2vec

2016: Li et al., ICLR'16 2016: Dai et al., ICML'16

Graph convolutional network

2015: Duvenaud et al., NIPS'15; Kipf & Welling ICLR'17

Spectral graph convolution

2014: Bruna et al., ICLR'14

Graph neural network

2005: Gori et al., IJCNN'05

Real world applications

- Heterogeneous knowledge graphs
- Online recommendation
- Online to offline recommendation
- Anomaly detection in FinTech

