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Network (Graph)

The general description of data and their relations




Why network is important?

Can you name a case where only care about an object
but not its relations with other subjects?
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Graph/network data is everywhere
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Graph as a data model

e The last resort for the curse of complexity in real applications

o Geographical networks, relationships, ...

e Divide-and-conquer in modeling

o Individual nodes and edges are well structured

o Global structures are weakly organized



Mining graphs and networks

e Multiple possible views
o Micro view: nodes and edges
o Macro view: global structures and properties

o Temporal view: changes over time

e Many important tasks

o Patterns, classification, prediction, clustering, outlier detection, ...



Why is graph and network mining challenging?

e Key assumptions in efficient data processing
o Well structured data

o Synchronized

e Challenges in graph and network data

o Some basic structures, but many unstructured elements

o Asynchronous



Many applications are intrinsically network problems

Link prediction in
Recommendation Systems bipartite graphs
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Many applications are intrinsically network problems

Financial credit & risk management Node importance & classification
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Many applications are intrinsically network problems

New material discovery

Materials discovery engine concept
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Traditional methods — graph theory

Real networks

Centrality Problem

Isomorphism Problem
Routing Problem % 1)
‘ Billion
Challenge 1: Problem Scale nodes




Traditional methods - graph analysis

Real Networks Graph Patterns Applications
Power-law
Link prediction

Graph

~Analysis S, W : :
y : Community detection

= /o Anomaly detection

SO N
i Challenge 2: Complexity and Diversity




From graph theory and analysis to learning

Progressive development of learning related fields

Feature Feature Representation End-to-end
Raw Data Crafting Selection Learning Learning




Learning from Networks

Provide general learning solutions to various tasks over a diverse
range of complex networks.

Feature Feature Representation End-to-end
Raw Data Crafting Selection Learning Learning
Graph Theory Graph Feature Network Graph Neural

and Analysis Selection Embedding Network




Key problems of learning from networks

1 High-dimensional features
Feature selection

1 Topological feature representation
Netowork embedding

- Fusion of topological and semantic information
Attribute network embedding

J End-to-end framework
Graph neural network

16



Key problems of learning from networks

1 High-dimensional features
Feature selection
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High-dimensional features

Features of nodes are often in a high-dimensional feature space

e Scenario 1: without explicit node features
= Manual feature engineering methods can generate a large number of features

= Not clear what features may be useful for learning on graphs

e Scenario 2: with explicit node features

= Observed node features are very high-dimensional, noisy, and sparse

= The intrinsic dimensionality of data may be small, e.g., the number of genes responsible for a
certain disease

High-dimensional data is often notorious to

tackle due to the curse of dimensionality 18



Feature selection without explicit node features
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Feature selection with explicit node features

Directly perform feature selection
on the observed node attributes
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Key problems of learning from networks

H

1 Topological feature representation
Netowork embedding
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Topology to vector space
G=(V,E) G=(V)

Vector Space

generate

embed

Easy to parallelize

Can apply classical ML methods



Basic requirements of network embedding

Goal Support network inference in vector space

ﬂ. l

Reflect network Maintain network
structure properties

Transitivity




Key issues in network embedding

- Structure-preserved network embedding
- Property-preserved network embedding
- Dynamic network embedding

- Robustness, Interpretability and Applicability



Key problems of learning from networks

H

1 Fusion of topological and semantic information
Attribute network embedding
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How to Jointly Embed Node Attributes & Network?

@ Texas A&M University @ GTAMU - Jun 7 v Customer Reviews Apple 15" MacBook Pro|
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Write a review

Top positive review
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Texas A&M University & @TAMU - Jun 7 v by amazon as to what people were buying were wrong. Amazon has now
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e Node attributes are prevalent in real-world networks

e Examples:iuser contentiin social media,reviews!in co-purchasing

networks, & paper abstracts in citation networks



Mining attributed networks with shallow embedding

e Focuses:
Joint learning, embedding networks, & accelerating optimization
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Mining attributed networks with deep embedding

e Focuses:
Deep architectures for networks & joint learning

e Methods:
Objective function based deep embedding
Graph neural networks

e Architectures:

Graph convolutional networks ® o

Graph recurrent networks
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Human-centric Network Analysis

e Focuses:
Interpretable embedding, & utilizing network embedding to

incorporate human knowledge

e Methods:
Interpretable node representation learning.
Attributed network analysis with humans in the loop

e Techniques: o o
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Key problems of learning from networks

H

J End-to-end framework
Graph neural network
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Connecting NE with Graph Neural Networks

Input:

Adjacency Matrix

A

E> [ Skip Gram ]

Random Walk

Il

_ (dense) Matrix
S - f (A) I:> Factorization

(sparse) Matrix |:> _ /
Factorization Z = f (Z )

@ h = f(AR")

=

Output:

Vectors

Z
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Graph Neural Networks

FastGCNs, Graph attention

Neural message passing, GraphSage

Gated graph neural network
structure2vec

Graph convolutional network

Spectral graph convolution

Graph neural network

2018: Velickovic et al., ICLR’18, Chen et al., ICLR 2018

2017: Gilmer et al., ICML’17; Hamilton et al., NIPS’17

2016: Lietal., ICLR’16
2016: Dai et al., ICML’16

2015: Duvenaud et al., NIPS’15; Kipf & Welling ICLR’17

2014: Bruna et al., ICLR’ 14

2005: Gori et al., IICNN’05



Real world applications

Heterogeneous knowledge graphs
Online recommendation

Online to offline recommendation
Anomaly detection in FinTech




Motivations etwor Graph Neura

Embedding Networks
Feature Attributed Network
Selection Embedding
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